Traces of H(curl)

Trace operators ${ }^{1}$

$$
\begin{aligned}
\boldsymbol{\gamma}_{T}: \mathbf{C}^{\infty}(\bar{\Omega}) \rightarrow \mathbf{C}^{\infty}(\partial \Omega): \boldsymbol{w} \mapsto \boldsymbol{n} \times(\boldsymbol{w} \times \boldsymbol{n}) \\
\boldsymbol{\gamma}_{T}^{\times}: \mathbf{C}^{\infty}(\bar{\Omega}) \rightarrow \mathbf{C}^{\infty}(\partial \Omega): \boldsymbol{w} \mapsto \boldsymbol{w} \times \boldsymbol{n}
\end{aligned}
$$

Theorem 2.26. There exist unique extensions

$$
\boldsymbol{\gamma}_{T}: \mathbf{H}(\operatorname{curl}, \Omega) \rightarrow \mathbf{H}^{-1 / 2}(\partial \Omega), \quad \boldsymbol{\gamma}_{T}^{\times}: \mathbf{H}(\operatorname{curl}, \Omega) \rightarrow \mathbf{H}^{-1 / 2}(\partial \Omega)
$$

as linear and bounded operators.
WARNING: $\boldsymbol{\gamma}_{T}, \gamma_{T}^{\times}$as stated in Theorem 2.26 are not surjective!
First, this is because $(\boldsymbol{a} \times \boldsymbol{n}) \cdot \boldsymbol{n}=0$ and so

$$
\boldsymbol{\gamma}_{T} \boldsymbol{w}, \boldsymbol{\gamma}_{T}^{\times} \boldsymbol{w} \in \mathbf{H}_{\boldsymbol{\tau}}^{-1 / 2}(\partial \Omega):=\left\{\boldsymbol{\psi} \in \mathbf{H}^{-1 / 2}(\partial \Omega): \boldsymbol{\psi} \cdot \boldsymbol{n}=0 \text { a.e. on } \partial \Omega\right\}
$$

However, $\boldsymbol{\gamma}_{T}, \boldsymbol{\gamma}_{T}^{\times}$still not surjective w.r.t. this space.
Definition 2.27. $\mathbf{Y}_{T}^{\times}:=\gamma_{T}^{\times}(\mathbf{H}(\operatorname{curl}, \Omega)),\|\boldsymbol{s}\|_{\mathbf{Y}_{T}^{\times}}:=\inf _{\substack{\boldsymbol{u} \in \mathbf{H}(\operatorname{curl}, \Omega) \\ \gamma_{T}^{\times} \boldsymbol{u}=\boldsymbol{s}}}\|\boldsymbol{u}\|_{\mathbf{H}(\operatorname{curl}, \Omega)}$
Theorem 2.28.
(i) \mathbf{Y}_{T}^{\times}is a Hilbert space
(ii) $\gamma_{T}^{\times}: \mathbf{H}($ curl,$\Omega) \rightarrow \mathbf{Y}_{T}^{\times}$is surjective and has a bounded right inverse
(iii) The map $\boldsymbol{\gamma}_{T}: \mathbf{H}(\mathbf{c u r l}, \Omega) \rightarrow\left(\mathbf{Y}_{T}^{\times}\right)^{*}$ is well-defined
(iv) For any $\boldsymbol{v}, \boldsymbol{w} \in \mathbf{H}(\operatorname{curl}, \Omega)$,

$$
\int_{\Omega}(\operatorname{curl} \boldsymbol{w}) \cdot \boldsymbol{v} d x=\int_{\Omega} \boldsymbol{w} \cdot \operatorname{curl} \boldsymbol{v} d x-\left\langle\gamma_{T}^{\times} \boldsymbol{w}, \boldsymbol{\gamma}_{T} \boldsymbol{v}\right\rangle_{\mathbf{Y}_{T}^{\times} \times\left(\mathbf{Y}_{T}^{\times}\right)^{*}}
$$

Remark. One can also show that $\boldsymbol{\gamma}_{T}: \mathbf{H}(\operatorname{curl}, \Omega) \rightarrow\left(\mathbf{Y}_{T}^{\times}\right)^{*}$ is surjective, and so \mathbf{Y}_{T} and \mathbf{Y}_{T}^{\times}are dual to each other.

Lemma 2.29.

$$
\begin{aligned}
\mathbf{H}_{0}(\operatorname{curl}, \Omega):={\overline{\mathbf{C}_{c}^{\infty}(\Omega)}}^{\|\cdot\|_{\mathbf{H}(\mathrm{curl}, \Omega)}} & =\left\{\boldsymbol{w} \in \mathbf{H}(\operatorname{curl}, \Omega): \boldsymbol{\gamma}_{T} \boldsymbol{w}=0\right\} \\
& =\left\{\boldsymbol{w} \in \mathbf{H}(\operatorname{curl}, \Omega): \boldsymbol{\gamma}_{T}^{\times} \boldsymbol{w}=0\right\}
\end{aligned}
$$

[^0]The following is additional information (not part of the lecture)

Proof of Theorem 2.28.

Part (i):

$$
\boldsymbol{s} \in \mathbf{Y}_{T}^{\times}, \quad \boldsymbol{v} \in \mathbf{H}(\operatorname{curl}, \Omega), \boldsymbol{\gamma}_{T}^{\times} \boldsymbol{v}=\boldsymbol{s}
$$

For $\phi \in \mathbf{H}(\mathbf{c u r l}, \Omega)$, define linear functional

$$
L_{s}(\phi):=\int_{\Omega} \operatorname{curl} \boldsymbol{v} \cdot \boldsymbol{\phi} d x-\int_{\Omega} \boldsymbol{v} \cdot \operatorname{curl} \boldsymbol{\phi} d x
$$

Properties: (exercise!)

- $L_{\boldsymbol{s}}$ depends only on \boldsymbol{s}
- $\left|L_{s}\right| \leq\|s\|_{\mathbf{Y}_{T}^{\times}}\|\phi\|_{\mathbf{H}(\operatorname{curl}, \Omega)}$

This shows that $L_{s} \in \mathbf{H}(\operatorname{curl}, \Omega)^{*}$.
Due to Riesz' theorem, there exists $\boldsymbol{w}_{\boldsymbol{s}} \in \mathbf{H}(\operatorname{curl}, \Omega)$:
$L_{\boldsymbol{s}}(\boldsymbol{\phi})=\left(\boldsymbol{w}_{\boldsymbol{s}}, \boldsymbol{\phi}\right)_{\mathbf{H}(\operatorname{curl}, \Omega)}=\left(\operatorname{curl} \boldsymbol{w}_{\boldsymbol{s}}, \operatorname{curl} \boldsymbol{\phi}\right)_{L^{2}(\Omega)}+\left(\boldsymbol{w}_{\boldsymbol{s}}, \boldsymbol{\phi}\right)_{\boldsymbol{L}^{2}(\Omega)}$
and $\left\|\boldsymbol{w}_{\boldsymbol{s}}\right\|_{\mathbf{H}(\mathbf{c u r l},() \Omega)}=\left\|L_{\boldsymbol{s}}\right\|_{\mathbf{H}(\mathbf{c u r l}, \Omega)^{*}}$
Further properties: (exercise!)

- $\operatorname{curl} \boldsymbol{w}_{\boldsymbol{s}}=-\boldsymbol{w}_{\boldsymbol{s}} \in \mathbf{H}(\operatorname{curl}, \Omega) \quad$ Hint: test with $\boldsymbol{\phi} \in \mathbf{C}_{c}^{\infty}(\Omega)$
- $\gamma_{T}^{\times}\left(\operatorname{curl} \boldsymbol{w}_{s}\right)=s$ Hint: $\boldsymbol{\phi} \in \mathbf{H}^{1}(\Omega)$, use Thm.2.26

Then

$$
\|\boldsymbol{s}\|_{\mathbf{Y}_{T}^{\times}} \leq\left\|\operatorname{curl} \boldsymbol{w}_{\boldsymbol{s}}\right\|_{\mathbf{H}(\operatorname{curl}, \Omega)}=\left\|\boldsymbol{w}_{\boldsymbol{s}}\right\|_{\mathbf{H}(\operatorname{curl}, \Omega)}=\left\|L_{\boldsymbol{s}}\right\|_{\mathbf{H}(\operatorname{curl}, \Omega)^{*}} \leq\|\boldsymbol{s}\|_{\mathbf{Y}_{T}^{\times}}
$$

\Longrightarrow Isometry between \mathbf{Y}_{T}^{\times}and closed (!) subspace of $\mathbf{H}(\mathbf{c u r l}, \Omega)$
Part (ii) follows by construction
Part (iii) For smooth $\boldsymbol{s}, \boldsymbol{\phi}$:

$$
\left\langle\boldsymbol{\gamma}_{T} \boldsymbol{\phi}, \boldsymbol{s}\right\rangle_{\left(\mathbf{Y}_{T}^{\times}\right) * \times \mathbf{Y}_{T}^{\times}} \stackrel{T h m .2 .26}{=} L_{\boldsymbol{s}}(\boldsymbol{\phi})
$$

Properties of $L_{s}+$ density $\Longrightarrow \gamma_{T} \boldsymbol{\phi} \in\left(\mathbf{Y}_{T}^{\times}\right)^{*}$ bounded in $\|\boldsymbol{\phi}\|_{\mathbf{H}(\text { curl }, \Omega)}$ Part (iv) follows from the above

Characterization of the two trace spaces

Observation: $\gamma_{T}^{\times} \boldsymbol{w}$ could have additional smoothness: for $u \in C^{\infty}(\bar{\Omega})$,

$$
\begin{aligned}
&\langle\boldsymbol{\gamma}_{T}^{\times} \boldsymbol{w}, \underbrace{\gamma_{T}(\nabla u)}_{=? ?}\rangle_{\partial \Omega} \stackrel{\text { L.2.1 }}{=}+\operatorname{density} \int_{\Omega} \boldsymbol{w} \cdot \underbrace{\operatorname{curl} \nabla u}_{=0} d x-\int_{\Omega}(\underbrace{\operatorname{curl} \boldsymbol{w}}_{\in \mathbf{H}(\operatorname{div}, \Omega)}) \cdot \nabla u d x \\
& \stackrel{\text { L.2.24 }}{=} \int_{\Omega}(\underbrace{\operatorname{div} \operatorname{curl} \boldsymbol{w}}_{=0}) u d x-\langle\underbrace{\gamma_{n}(\operatorname{curl} \boldsymbol{w})}_{=? ?}, \gamma u\rangle_{\partial \Omega}
\end{aligned}
$$

Differential operators on the surface (part I)

- Surface gradient $\nabla_{\partial \Omega}$: for $u \in C^{\infty}(\bar{\Omega}), \varphi=\gamma u$,

$$
\nabla_{\partial \Omega \varphi}:=\gamma_{T}(\nabla u)=\gamma \nabla u-\frac{\partial u}{\partial \boldsymbol{n}} \boldsymbol{n}
$$

Definition only depends on φ. Extension: $\nabla_{\partial \Omega}: H^{3 / 2}(\partial \Omega) \rightarrow \mathbf{H}_{\boldsymbol{\tau}}^{1 / 2}(\partial \Omega)$ For $\Omega=\mathbb{R}^{2} \times \mathbb{R}^{-}, \nabla_{\partial \Omega} \varphi=\left(\partial_{1} \varphi, \partial_{2} \varphi, 0\right)^{T}$

- Surface divergence $\operatorname{div}_{\partial \Omega}: \mathbf{H}_{\boldsymbol{\tau}}^{-1 / 2}(\partial \Omega) \rightarrow H^{-3 / 2}(\partial \Omega)$
defined by duality:

$$
\left\langle\operatorname{div}_{\partial \Omega} \boldsymbol{v}, \varphi\right\rangle_{\partial \Omega}=-\left\langle\boldsymbol{v}, \nabla_{\partial \Omega} \varphi\right\rangle_{\partial \Omega}
$$

For $\Omega=\mathbb{R}^{2} \times \mathbb{R}^{-}, \operatorname{div}_{\partial \Omega} \boldsymbol{v}=\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}$
We have shown above that

$$
\left\langle\operatorname{div}_{\partial \Omega} \boldsymbol{\gamma}_{T}^{\times} \boldsymbol{w}, \gamma u\right\rangle_{\partial \Omega}=\langle\boldsymbol{\gamma}_{T}^{\times} \boldsymbol{w}, \underbrace{\nabla_{\partial \Omega} \gamma u}_{=\gamma_{T}(\nabla u)}\rangle_{\partial \Omega}=\langle\underbrace{\gamma_{n}(\mathbf{c u r l} \boldsymbol{w})}_{\in \mathbf{H}^{-1 / 2}(\partial \Omega)}, \gamma u\rangle_{\partial \Omega}
$$

Hence: $\quad \operatorname{div}_{\partial \Omega} \gamma_{T}^{\times} \boldsymbol{w} \in \mathbf{H}^{-1 / 2}(\partial \Omega) \quad$!
Lemma (without proof):
For C^{1}-domains Ω,

$$
\mathbf{Y}_{T}^{\times}=\mathbf{H}^{-1 / 2}(\operatorname{Div}, \partial \Omega):=\left\{\boldsymbol{\psi} \in \mathbf{H}_{\boldsymbol{\tau}}^{-1 / 2}(\partial \Omega): \operatorname{div}_{\partial \Omega} \boldsymbol{\psi} \in H^{-1 / 2}(\partial \Omega)\right\}
$$

Differential operators on the surface (part II)

- Vectorial surface curl:

$$
\operatorname{curl}_{\partial \Omega} \varphi:=-\boldsymbol{n} \times \nabla_{\partial \Omega} \varphi
$$

For $\Omega=\mathbb{R}^{2} \times \mathbb{R}^{-}, \operatorname{curl}_{\partial \Omega} \varphi=\left(-\partial_{2} \varphi, \partial_{1} \varphi, 0\right)^{T}$

- Scalar surface curl:

$$
\operatorname{curl}_{\partial \Omega} \boldsymbol{v}:=-\operatorname{div}_{\partial \Omega}(\boldsymbol{n} \times \boldsymbol{v})
$$

For $\Omega=\mathbb{R}^{2} \times \mathbb{R}^{-}, \operatorname{curl}_{\partial \Omega} \boldsymbol{v}=\partial_{2} v_{1}-\partial_{1} v_{2}$

Lemma (without proof):
For C^{1}-domains Ω,

$$
\mathbf{Y}_{T}=\mathbf{H}^{-1 / 2}(\operatorname{Curl}, \partial \Omega):=\left\{\boldsymbol{\psi} \in \mathbf{H}_{\boldsymbol{\tau}}^{-1 / 2}(\partial \Omega): \operatorname{curl}_{\partial \Omega} \boldsymbol{\psi} \in H^{-1 / 2}(\partial \Omega)\right\},
$$

is surjective and has a bounded right inverse.

Further characterizations:

- Lipschitz polyhedra: continuity properties needed across edges \rightsquigarrow

$$
\mathbf{H}_{\perp}^{-1 / 2}(\operatorname{Curl}, \partial \Omega), \quad \mathbf{H}_{\|}^{-1 / 2}(\text { Div }, \partial \Omega)
$$

[Buffa \& Ciarlet, M2AN 24:9-30, 2001].

- General Lipschitz domains:
[Buffa, Costabel, \& Sheen, JMAA 276:845-867, 2002].

[^0]: ${ }^{1}$ Short hands: $\mathbf{C}^{k}(D):=C^{k}(D)^{3}, \mathbf{L}^{2}(D):=L^{2}(D)^{3}, \mathbf{H}^{s}(D):=H^{s}(D)^{3}$

