Different regimes of Maxwell's equations $\nu = 1/\mu$ Full Maxwell

(15)
$$\varepsilon \frac{\partial^2 \boldsymbol{E}}{\partial t^2} + \sigma \frac{\partial \boldsymbol{E}}{\partial t} + \operatorname{curl}\left(\nu \operatorname{curl} \boldsymbol{E}\right) = -\frac{\partial \boldsymbol{J}_i}{\partial t}$$

(16)
$$\varepsilon \frac{\partial^2 \boldsymbol{A}}{\partial t^2} + \sigma \frac{\partial \boldsymbol{A}}{\partial t} + \operatorname{curl}\left(\nu \operatorname{curl} \boldsymbol{A}\right) = \boldsymbol{J}_i$$

Eddy current

(17)
$$\sigma \frac{\partial \boldsymbol{E}}{\partial t} + \operatorname{curl}(\nu \operatorname{curl} \boldsymbol{E}) = -\frac{\partial \boldsymbol{J}_i}{\partial t}$$

(18)
$$\sigma \frac{\partial \boldsymbol{A}}{\partial t} + \operatorname{curl}(\nu \operatorname{curl} \boldsymbol{A}) = \boldsymbol{J}_i$$

Implicit time discretization of (15)–(18)

$$\left(\frac{\varepsilon}{\tau^2} + \frac{\sigma}{\tau}\right) \boldsymbol{u} + \operatorname{\mathbf{curl}}\left(\nu \operatorname{\mathbf{curl}} \boldsymbol{u}\right) = \dots$$

where $\boldsymbol{u} = \boldsymbol{E}$ or \boldsymbol{A} , and $\boldsymbol{\varepsilon} = 0$ in the eddy current case

Magnetostatics

(20)
$$\operatorname{curl}(\nu \operatorname{curl} A) = J$$

Time-harmonic Maxwell

(21)
$$(-\omega^{2}\varepsilon + i\sigma\omega)\widehat{E} + \operatorname{curl}(\nu\operatorname{curl}\widehat{E}) = -i\omega\widehat{J}_{i}$$

(22)
$$(-\omega^{2}\varepsilon + i\sigma\omega)\widehat{A} + \operatorname{curl}(\nu\operatorname{curl}\widehat{A}) = \widehat{J}_{i}$$

Common pattern:

$$\operatorname{curl}(\nu\operatorname{curl} \boldsymbol{u}) + \kappa \boldsymbol{u} = \boldsymbol{f}$$

Full Maxwell, implicit time discretization	$\kappa \in \mathbb{R}^+$
eddy current, implicit time discretization	$\kappa \in \mathbb{R}_0^+$
Magnetostatics	$\kappa = 0$
Time-harmonic Maxwell	$\kappa \in \mathbb{C} \setminus \mathbb{R}_0^+$
Time-harmonic eddy current ($\varepsilon = 0$)	$\kappa \in \mathbb{I}$

Conductivity regularization to avoid $\kappa = 0$ (possibly in subdomains):

$$\sigma_{\rm reg}(x) = \begin{cases} \sigma(x) & \text{if } \sigma(x) > \sigma_0 \\ \sigma_0 & \text{else,} \end{cases}$$

where $\sigma_0 > 0$ is a small constant.

This regularization can be applied to the eddy current cases, as well as to Magnetostatics:

 $\operatorname{curl}(\nu\operatorname{curl} \boldsymbol{A}) + \sigma_0 \boldsymbol{A} = \boldsymbol{J}$

Approximation of the true solution as $\sigma_0 \rightarrow 0$