NMEE, SS 2012

Triangulations

 $\Omega \subset \mathbb{R}^d$ bounded Lipschitz polytype (d = 2: polygon, d = 3: polyhedron)

 $\mathcal{T}^{h}(\Omega)$ regular triangulation, i.e.,

- $\mathcal{T}^h(\Omega) = \{T\}$, where T non-degenerate simplices (d = 2: triangles, d = 3: tetrahedra), $T = \overline{T}$
- $\overline{\Omega} = \bigcup_{T \in \mathcal{T}^h(\Omega)} T$
- the intersection of two different elements is either empty, one edge or one face of both elements

Examples:

We define

$$h_T := \operatorname{diam}(T), \qquad h := \max_{T \in \mathcal{T}^h(\Omega)} h_T$$

 $\rho_T :=$ radius of larges ball inscribed in T

A family of triangulations $\{\mathcal{T}^h(\Omega)\}_{h\in\Theta}$ is called

- shape regular iff $\exists c > 0 \ \forall h \in \Theta \ \forall T \in \mathcal{T}^h(\Omega) : \rho_T \ge c h_T$
- quasi uniform iff shape reg. and $\exists c > 0 \ \forall h \in \Theta \ \forall T \in \mathcal{T}^h(\Omega) : h_T \ge c h$

For a (fixed) triangulation we define

set of $vertices$:	$\mathcal{V} = \{V_i\}$	
set of $edges$:	$\mathcal{E} = \{E_{ik}\}$	
set of $triangles$:	$\mathcal{T} = \{T_{ik\ell}\}$	(for $d = 2$)
set of $faces$:	$\mathcal{F} = \{F_{ik\ell}\}$	(for $d = 3$)
set of $tetrahedra$:	$\mathcal{T} = \{T_{ik\ell m}\}$	(for $d = 3$)

Finite Elements

Definition 3.1. A finite element (T, V, \mathcal{N}) consists of

- geometric domain T (element domain)
- finite-dimensional space V of functions on T (space of shape functions)
- set \mathcal{N} of linearly independent functionals (set of nodal variables) which form a basis of V^*

Lemma 3.2. Let T, V be as in Def. 3.1 and $\mathcal{N} = \{\psi_1, \ldots, \psi_N\} \subset V^*$. Then the following statements are equivalent:

- \mathcal{N} is a basis of V^*
- $\forall v \in V : [\forall i = 1, \dots, N : \psi_i(v) = 0] \implies v = 0$ (*N* determines *V*)
- $\forall \beta_1, \dots, \beta_N \in \mathbb{R} \quad \exists! \ v \in V : \psi_i(v) = \beta_i \quad \forall i = 1, \dots, N$ (unisolvence)

Definition 3.3. Let (T, V, \mathcal{N}) be a finite element with $\mathcal{N} = \{\psi_1, \ldots, \psi_N\}$. The (unique) basis $\{\varphi_1, \ldots, \varphi_N\}$ of V fulfilling

$$\psi_i(\varphi_k) = \delta_{ik}$$

is called *nodal basis*.

Definition 3.4. Two finite elements $(\hat{T}, \hat{V}, \hat{\mathcal{N}})$ and (T, V, \mathcal{N}) are called *affine equivalent* if there exists an affine linear map $\Phi(x) = F x + b$ with

- $T = \Phi(\widehat{T})$
- $V \circ \Phi = \hat{V}$ (\hat{V} is pull-back of V)
- $\mathcal{N} = \{ v \mapsto \widehat{\psi}(v \circ \Phi) : \widehat{\psi} \in \widehat{\mathcal{N}} \}$ (\mathcal{N} is push-forward of $\widehat{\mathcal{N}}$)

References:

P.G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM

S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer