Triangulations

$\Omega \subset \mathbb{R}^{d}$ bounded Lipschitz polytype ($d=2$: polygon, $d=3$: polyhedron)
$\mathcal{T}^{h}(\Omega)$ regular triangulation, i.e.,

- $\mathcal{T}^{h}(\Omega)=\{T\}$, where T non-degenerate simplices $(d=2$: triangles, $d=3$: tetrahedra), $T=\bar{T}$
- $\bar{\Omega}=\bigcup_{T \in \mathcal{T}^{h}(\Omega)} T$
- the intersection of two different elements is either empty, one edge or one face of both elements

Examples:

We define

$$
\begin{aligned}
& h_{T}:=\operatorname{diam}(T), \quad h:=\max _{T \in \mathcal{T}^{h}(\Omega)} h_{T} \\
& \rho_{T}:=\text { radius of larges ball inscribed in } T
\end{aligned}
$$

A family of triangulations $\left\{\mathcal{T}^{h}(\Omega)\right\}_{h \in \Theta}$ is called

- shape regular iff $\exists c>0 \forall h \in \Theta \forall T \in \mathcal{T}^{h}(\Omega): \rho_{T} \geq c h_{T}$
- quasi uniform iff shape reg. and $\exists c>0 \forall h \in \Theta \forall T \in \mathcal{T}^{h}(\Omega): h_{T} \geq c h$

For a (fixed) triangulation we define

$$
\begin{array}{lll}
\text { set of vertices : } & \mathcal{V}=\left\{V_{i}\right\} & \\
\text { set of edges: } & \mathcal{E}=\left\{E_{i k}\right\} & \\
\text { set of triangles : } & \mathcal{T}=\left\{T_{i k \ell}\right\} & (\text { for } d=2) \\
\text { set of faces: } & \mathcal{F}=\left\{F_{i k \ell}\right\} & \text { (for } d=3) \\
\text { set of tetrahedra }: & \mathcal{T}=\left\{T_{i k \ell m}\right\} & \text { (for } d=3)
\end{array}
$$

Finite Elements

Definition 3.1. A finite element (T, V, \mathcal{N}) consists of

- geometric domain T (element domain)
- finite-dimensional space V of functions on T (space of shape functions)
- set \mathcal{N} of linearly independent functionals (set of nodal variables) which form a basis of V^{*}

Lemma 3.2. Let T, V be as in Def. 3.1 and $\mathcal{N}=\left\{\psi_{1}, \ldots, \psi_{N}\right\} \subset V^{*}$. Then the following statements are equivalent:

- \mathcal{N} is a basis of V^{*}
- $\forall v \in V:\left[\forall i=1, \ldots, N: \psi_{i}(v)=0\right] \Longrightarrow v=0 \quad(\mathcal{N}$ determines $V)$
- $\forall \beta_{1}, \ldots, \beta_{N} \in \mathbb{R} \quad \exists!v \in V: \psi_{i}(v)=\beta_{i} \quad \forall i=1, \ldots, N \quad$ (unisolvence)

Definition 3.3. Let (T, V, \mathcal{N}) be a finite element with $\mathcal{N}=\left\{\psi_{1}, \ldots, \psi_{N}\right\}$. The (unique) basis $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ of V fulfilling

$$
\psi_{i}\left(\varphi_{k}\right)=\delta_{i k}
$$

is called nodal basis.

Definition 3.4. Two finite elements $(\widehat{T}, \widehat{V}, \widehat{\mathcal{N}})$ and (T, V, \mathcal{N}) are called affine equivalent if there exists an affine linear map $\Phi(x)=F x+b$ with

- $T=\Phi(\widehat{T})$
- $V \circ \Phi=\widehat{V} \quad(\widehat{V}$ is pull-back of $V)$
- $\mathcal{N}=\{v \mapsto \widehat{\psi}(v \circ \Phi): \widehat{\psi} \in \widehat{\mathcal{N}}\} \quad(\mathcal{N}$ is push-forward of $\widehat{\mathcal{N}})$

[^0]
[^0]: References:
 P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM
 S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer

