19 Consider the following variational problems:
Find $\boldsymbol{u} \in H(\operatorname{curl}, \Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} \nu \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} d x=\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} d x \quad \forall \boldsymbol{v} \in H(\operatorname{curl}, \Omega) . \tag{7.1}
\end{equation*}
$$

Find $(\boldsymbol{u}, \varphi) \in H(\operatorname{curl}, \Omega) \times H^{1}(\Omega) \mathbb{R}$ such that

$$
\begin{array}{ll}
\int_{\Omega} \nu \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} d x+\int_{\Omega} \boldsymbol{v} \cdot \nabla \varphi d x & =\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} d x \tag{7.2}\\
\int_{\Omega} \boldsymbol{u} \cdot \nabla \psi d x & =0
\end{array}
$$

for all $(\boldsymbol{v}, \psi) \in H(\operatorname{curl}, \Omega) \times H^{1}(\Omega) \mid \mathbb{R}$.
Show that if $\boldsymbol{f} \perp \nabla H^{1}(\Omega)$, then for any solution $(\boldsymbol{u}, \varphi)$ of (7.2) we have that
$-\nabla \varphi=0$,

- u solves (7.1).

20 Show Lemma 3.2 from the lecture, i.e. that the statements
$-\mathcal{N}$ is a basis of V^{*}
$-\forall v \in V:\left[\forall i=1, \ldots, N: \psi_{i}(v)=0\right] \Longrightarrow v=0$
$-\forall \beta_{1}, \ldots, \beta_{N} \in \mathbb{R} \quad \exists!v \in V: \psi_{i}(v)=\beta_{i} \quad \forall i=1, \ldots, N$
are equivalent.
Hint: Relate each statement to a statement for the matrix $G \in \mathbb{R}^{N \times N}$,

$$
G_{i j}=\psi_{i}\left(\phi_{j}\right),
$$

where $\left\{\phi_{j}\right\}_{j=1}^{N}$ is a fixed basis of V.
21 Show that the triangular Nédélec element (Definition 3.8) is indeed a finite element (according to Definition 3.1).
Hint: Use the second line in Lemma 3.2 (Exercise 20) and Lemma 3.10 (iii).

