16 Show that
(a) $\forall \phi \in H_{0}^{1}(\Omega): \gamma_{T}(\nabla \phi)=0$,
(b) $\forall \boldsymbol{w} \in H_{0}(\operatorname{curl}, \Omega): \gamma_{n}(\operatorname{curl} \boldsymbol{w})=0$,
i.e.

$$
H_{0}^{1}(\Omega) \xrightarrow{\nabla} H_{0}(\operatorname{curl}, \Omega) \xrightarrow{\text { curl }} H_{0}(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) .
$$

Hint: Show the identities for $\phi \in C_{0}^{\infty}(\Omega)$ and $\boldsymbol{w} \in C_{0}^{\infty}(\Omega)^{3}$, use integration by parts and use density.

17 Prove Lemma 2.33 (iii) from the lecture, i.e. show that for each $\boldsymbol{q} \in H(\operatorname{div}, \Omega)$ with $\operatorname{div} \boldsymbol{q}=0, \gamma_{n} \boldsymbol{q}=0$, there exists $\boldsymbol{w} \in H_{0}(\operatorname{curl}, \Omega)$ with

$$
\boldsymbol{q}=\operatorname{curl} \boldsymbol{w}, \quad \operatorname{div} \boldsymbol{w}=0, \quad\|\boldsymbol{w}\|_{H(\operatorname{curl}, \Omega)} \leq C\|\boldsymbol{q}\|_{L^{2}(\Omega)^{3}} .
$$

Hint: Set $\boldsymbol{w}_{2} \in H^{1}\left(\mathbb{R}^{3}\right)$ as in the proof of Lemma 2.33 (ii) and let $\psi \in H_{0}^{1}(\Omega)$ be such that

$$
\int_{\Omega} \nabla \psi \cdot \nabla v d x=\int_{\Omega} \boldsymbol{w}_{2} \cdot \nabla v d x \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Set $\boldsymbol{w}:=\boldsymbol{w}_{2}-\nabla \psi$ and show the properties. Show and use that

$$
\|\nabla \psi\|_{L^{2}(\Omega)^{3}} \leq\left\|\boldsymbol{w}_{2}\right\|_{L^{2}(\Omega)^{3}} .
$$

18 Let $\boldsymbol{q} \in H(\operatorname{div}, \Omega)$ with $\operatorname{div} \boldsymbol{q}=0$ and let $\tilde{\Omega} \supset \Omega$.
Show that $\exists \tilde{\boldsymbol{q}} \in H(\operatorname{div}, \tilde{\Omega})$:

$$
\begin{aligned}
\tilde{\boldsymbol{q}} & =\boldsymbol{q} & \text { in } \Omega, \\
\operatorname{div} \tilde{\boldsymbol{q}} & =0, & \\
\gamma_{n} \tilde{\boldsymbol{q}} & =0 & \text { on } \partial \tilde{\Omega} .
\end{aligned}
$$

Hint: How should you choose $\gamma_{n} \tilde{\boldsymbol{q}}$ on $\partial \Omega$? Use Exercise 13 on the domain $\tilde{\Omega} \backslash \bar{\Omega}$.

