- 16 Show that
- (a) $\forall \phi \in H_0^1(\Omega) : \boldsymbol{\gamma}_T(\nabla \phi) = 0,$
- (b) $\forall \boldsymbol{w} \in H_0(\operatorname{\mathbf{curl}}, \Omega) : \gamma_n(\operatorname{\mathbf{curl}} \boldsymbol{w}) = 0,$

i.e.

$$H_0^1(\Omega) \xrightarrow{\nabla} H_0(\operatorname{\mathbf{curl}}, \Omega) \xrightarrow{\operatorname{\mathbf{curl}}} H_0(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^2(\Omega).$$

Hint: Show the identities for $\phi \in C_0^{\infty}(\Omega)$ and $\boldsymbol{w} \in C_0^{\infty}(\Omega)^3$, use integration by parts and use density.

17 Prove Lemma 2.33 (iii) from the lecture, i.e. show that for each $\boldsymbol{q} \in H(\operatorname{div}, \Omega)$ with div $\boldsymbol{q} = 0, \gamma_n \boldsymbol{q} = 0$, there exists $\boldsymbol{w} \in H_0(\operatorname{curl}, \Omega)$ with

$$\boldsymbol{q} = \operatorname{\mathbf{curl}} \boldsymbol{w}, \quad \operatorname{div} \boldsymbol{w} = 0, \quad \|\boldsymbol{w}\|_{H(\operatorname{\mathbf{curl}},\Omega)} \leq C \|\boldsymbol{q}\|_{L^2(\Omega)^3}.$$

Hint: Set $\boldsymbol{w}_2 \in H^1(\mathbb{R}^3)$ as in the proof of Lemma 2.33 (ii) and let $\psi \in H^1_0(\Omega)$ be such that

$$\int_{\Omega} \nabla \psi \cdot \nabla v \, dx = \int_{\Omega} \boldsymbol{w}_2 \cdot \nabla v \, dx \quad \forall v \in H_0^1(\Omega).$$

Set $\boldsymbol{w} := \boldsymbol{w}_2 - \nabla \psi$ and show the properties. Show and use that

$$\|\nabla\psi\|_{L^2(\Omega)^3} \le \|w_2\|_{L^2(\Omega)^3}.$$

18 Let $\boldsymbol{q} \in H(\operatorname{div}, \Omega)$ with div $\boldsymbol{q} = 0$ and let $\tilde{\Omega} \supset \Omega$. Show that $\exists \tilde{\boldsymbol{q}} \in H(\operatorname{div}, \tilde{\Omega})$:

$$\begin{split} \tilde{\boldsymbol{q}} &= \boldsymbol{q} & \text{ in } \Omega, \\ \text{div } \tilde{\boldsymbol{q}} &= 0, \\ \gamma_n \, \tilde{\boldsymbol{q}} &= 0 & \text{ on } \partial \tilde{\Omega} \end{split}$$

Hint: How should you choose $\gamma_n \tilde{q}$ on $\partial \Omega$? Use Exercise 13 on the domain $\tilde{\Omega} \setminus \bar{\Omega}$.