13 Prove the Remark after Theorem 2.22 from the lecture, i.e.
If $\psi \in H^{-1 / 2}(\partial \Omega)$ with $\langle\psi, 1\rangle_{\partial \Omega}=0$, then there exists a $\boldsymbol{q} \in H(\operatorname{div}, \Omega)$ with

$$
\begin{aligned}
& \operatorname{div} \boldsymbol{q}=0 \\
& \gamma_{n} \boldsymbol{q}=\psi \\
& \|\boldsymbol{q}\|_{H(\operatorname{div}, \Omega)} \leq C\|\psi\|_{H^{-1 / 2}(\partial \Omega)} .
\end{aligned}
$$

Hint: Prove the remark analogously as the proof of Theorem 2.22 but solve

$$
-\triangle u=0, \quad \frac{\partial u}{\partial n}=\psi .
$$

14 Let us define

$$
\begin{aligned}
V & :={\overline{C_{0}^{\infty}(\Omega)^{3}}}^{\|\cdot\|_{H(\text { curl })}} \\
W & :=\left\{\boldsymbol{w} \in H(\operatorname{curl}, \Omega): \boldsymbol{\gamma}_{T}^{\times} \boldsymbol{w}=0\right\} .
\end{aligned}
$$

Show that $V=W$.
Hint: Remember that $H(\operatorname{curl}, \Omega)=V \oplus V^{\perp}$ (where V^{\perp} is the orthogonal complement with respect to the H (curl)-inner product). First show that $V \subset W$ (using that γ_{T}^{\times}is continuous). Secondly show that $V^{\perp} \cap W=\{0\}$. For the latter, calculate curl curl \boldsymbol{v} for $\boldsymbol{v} \in V^{\perp} \cap W$ and then $\|\boldsymbol{v}\|_{H(\text { curl })}^{2}$ using Theorem 2.28 (iv).

15 Let $\Omega \subset \mathbb{R}^{2}$. We define the following 2-dimensional vector and scalar curl:

$$
\begin{aligned}
& \operatorname{curl} \varphi=\binom{-\frac{\partial \varphi}{\partial x_{2}}}{\frac{\partial \varphi}{\partial x_{1}}} \quad \text { for } \varphi \in C^{1}(\bar{\Omega}), \\
& \operatorname{curl} \boldsymbol{v}=\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}} \\
& \text { for } \boldsymbol{v} \in \boldsymbol{C}^{1}(\bar{\Omega}) .
\end{aligned}
$$

(a) Find the definition of the corresponding weak derivatives and of the (vector-valued) space $H(\operatorname{curl}, \Omega)$.
(b) Show the following two De Rham complexes:

$$
\begin{aligned}
& H^{1}(\Omega) \xrightarrow{\nabla} H(\operatorname{curl}, \Omega) \xrightarrow{\text { curl }} L^{2}(\Omega), \\
& H^{1}(\Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) .
\end{aligned}
$$

