510 Let $\Omega=\Omega_{1} \cup \Omega_{2} \cup \Gamma$ and $\boldsymbol{v}_{1} \in\left[C^{1}\left(\bar{\Omega}_{1}\right)\right]^{3}, \boldsymbol{v}_{2} \in\left[C^{1}\left(\bar{\Omega}_{2}\right)\right]^{3}$. We define

$$
\boldsymbol{v}(x):=\left\{\begin{array}{ll}
\boldsymbol{v}_{1}(x), & x \in \Omega_{1} \\
\boldsymbol{v}_{2}(x), & x \in \Omega_{2}
\end{array}\right\} \in\left[L^{2}(\Omega)\right]^{3} .
$$

Show that

$$
\begin{equation*}
\boldsymbol{v} \in H(\operatorname{curl}, \Omega) \quad \Longleftrightarrow \quad \boldsymbol{v}_{1} \times \boldsymbol{n}=\boldsymbol{v}_{2} \times \boldsymbol{n} \text { on } \Gamma . \tag{4.1}
\end{equation*}
$$

11 Consider the smoothing operators S_{g}^{ε} from the lecture. Show that

$$
\begin{equation*}
\exists C>0 \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right) \quad \forall w \in L^{2}(\Omega):\left\|S_{g}^{\varepsilon} w\right\|_{L^{2}(\Omega)} \leq C\|w\|_{L^{2}(\Omega)} \tag{4.2}
\end{equation*}
$$

Hint: Use the definition of S_{g}^{ε}, exchange \int_{Ω} and $\int_{B(0,1)}$, transform Ω to $\phi^{\varepsilon}(\Omega)$ and use Lemma 2.10 from the lecture to bound the Jacobi determinant.

12 Let \hat{T}, T be tetrahedra, $\phi: \hat{T} \rightarrow T$ an affine linear bijective map, $F=\phi^{\prime}, J=$ $\operatorname{det} F=\frac{|T|}{|\hat{T}|}>0$. Let $\hat{f} \subset \partial \hat{T}$ be a (flat) face with normal $\hat{\boldsymbol{n}}$ and let $f=\phi(\hat{f})$ be the corresponding face of T with normal \boldsymbol{n}.
Show that for $\hat{\boldsymbol{v}}, \hat{\boldsymbol{w}} \in\left[C^{1}(\overline{\hat{T}})\right]^{3}$:

$$
\begin{equation*}
\int_{f}(\boldsymbol{v} \times \boldsymbol{n}) \cdot \boldsymbol{w} d \sigma=\int_{\hat{f}}(\hat{\boldsymbol{v}} \times \hat{\boldsymbol{n}}) \cdot \hat{\boldsymbol{w}} d \hat{\sigma} \tag{4.3}
\end{equation*}
$$

where \boldsymbol{v} and \boldsymbol{w} are the covariant transformations of $\hat{\boldsymbol{v}}$ and $\hat{\boldsymbol{w}}$, e.g. $\boldsymbol{v} \circ \phi=F^{-T} \hat{\boldsymbol{v}}$. Hint: Use that

$$
\boldsymbol{n}=\left(\frac{J}{J_{f}} F^{-T} \hat{\boldsymbol{n}}\right) \circ \phi^{-1} \text { with } J_{f}=\frac{|f|}{|\hat{f}|}
$$

and that $(A \boldsymbol{y}) \times(A \boldsymbol{z})=(\operatorname{det} A) A^{-T}(\boldsymbol{y} \times \boldsymbol{z})$ for $A \in \mathbb{R}^{3 \times 3}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{3}$.

