04 Assume that the magnetostatic equations hold on the infinite cylinder $\Omega \times \mathbb{R}$, where $\Omega \subset \mathbb{R}^{2}$ is bounded and simply connected, and assume further that

$$
\boldsymbol{J}=\left(\begin{array}{c}
0 \\
0 \\
J_{3}\left(x_{1}, x_{2}\right)
\end{array}\right), \quad \boldsymbol{H}=\left(\begin{array}{c}
H_{1}\left(x_{1}, x_{2}\right) \\
H_{2}\left(x_{1}, x_{2}\right) \\
0
\end{array}\right) .
$$

Verify that the choice

$$
\boldsymbol{A}=\left(\begin{array}{c}
0 \\
0 \\
A_{3}\left(x_{1}, x_{2}\right)
\end{array}\right)
$$

for the vector potential implies the Colomb gauge, and that the magnetostatic equations (in the cylinder) simplify to

$$
\begin{equation*}
-\operatorname{div}\left(\frac{1}{\mu} \nabla A_{3}\right)=J_{3} \quad \text { in } \Omega \tag{2.1}
\end{equation*}
$$

where ∇ denotes the two-dimensional gradient.
05 Continue the previous exercise: let $\vec{n}=\left(n_{1}, n_{2}\right)^{\top}$ be the unit normal on $\partial \Omega$ or on any interface $\Gamma \subset \Omega$ and let $\boldsymbol{n}=\left(n_{1}, n_{2}, 0\right)^{\top}$ denote the corresponding normal on/in the cylinder.
(a) Show that

$$
\boldsymbol{H} \times \boldsymbol{n}=\left(\begin{array}{c}
0 \tag{2.2}\\
0 \\
J_{S, i, 3}
\end{array}\right) \quad \Longleftrightarrow \quad \frac{1}{\mu} \nabla A_{3} \cdot \vec{n}=J_{S, i, 3} .
$$

(b) Show that

$$
\begin{equation*}
A_{3} \text { continuous across } \Gamma \quad \Longrightarrow \quad[\boldsymbol{B} \cdot \boldsymbol{n}]=0 \quad \text { on } \Gamma \times \mathbb{R} \text {. } \tag{2.3}
\end{equation*}
$$

06 Consider a plane wave

$$
\boldsymbol{E}(\boldsymbol{x}, t)=\boldsymbol{a} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}
$$

where $\boldsymbol{a} \in \mathbb{R}^{3}$ is the amplitude, ω the angular frequency, and $\boldsymbol{k} \in \mathbb{R}^{3}$ the wave vector (telling about the direction and the wave number $|\boldsymbol{k}|$). Assume that ε and μ are positive constants, and that $\sigma=0$ (e.g. vacuum).

Find the conditions such that the plane wave fulfill equation (15) from the lecture, i.e.,

$$
\begin{equation*}
\varepsilon \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}+\sigma \frac{\partial \boldsymbol{E}}{\partial t}+\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \boldsymbol{E}=0 . \tag{2.4}
\end{equation*}
$$

