<u>TUTORIAL</u>

"Computational Mechanics"

to the lecture

"Numerical Methods in Continuum Mechanics 1"

 $|\text{Tutorial 12}| \quad \text{Friday, Jun 18, 2010 (Time : <math>10^{15} - 11^{00}, \quad \text{Room : HS 14})}$

5 Linear Elasticity

5.1 The Basic Equations

41 Let $\Omega \subset \mathbf{R}^3$ be a bounded domain with Lipschitz continuous boundary $\Gamma := \partial \Omega$, and let $f \in [L_2(\Omega)]^3$, and $t \in [L_2(\Gamma)]^3$. We define the right handside F of an elastic BVP (see the lectures, Chapter 3, Box (2)) by

$$\langle F, v \rangle := \int_{\Omega} f^T v \, \mathrm{d}x + \int_{\Gamma} t^T v \, \mathrm{d}s \quad \forall v \in V := \left[H^1(\Omega) \right]^3$$

Show, that F is in V^* , i. e., that F is linear and bounded.

- 42 Let $\Omega \subset \mathbf{R}^3$ be a bounded domain with Lipschitz continuous boundary $\Gamma := \partial \Omega$, and let the displacement $v = (v_1, v_2)^T \in [H^1(\Omega)]^2$. Let the strain $\varepsilon(v)$ be defined as $\varepsilon(v) = \frac{1}{2} (\nabla v + \nabla v^T)$. Calculate the set R for which there holds $v \in R \Leftrightarrow \varepsilon(v) = 0$.
- 43^* Consider the iteration (see lectures, Theorem 3.7, Equation (11))

$$(u_{n+1}, v)_1 = (u_n, v)_1 + \tau (\langle F, v \rangle - a(u_n, v)) \quad \forall v \in V_0$$

(Richardson with Laplace Preconditioner), where (see lectures, Chapter 3, Box (2))

$$\begin{aligned} (u, v)_1 &= \int_{\Omega} \nabla u^T \nabla v \, \mathrm{d}x \,, \\ a(u, v) &= \int_{\Omega} \varepsilon(u)^T D \varepsilon(v) \, \mathrm{d}x \,, \\ \langle F, v \rangle &= \int_{\Omega} f^T v \, \mathrm{d}x + \int_{\Gamma} t^T v \, \mathrm{d}s \end{aligned}$$

Outline the scheme of how to apply a Finite Element discretization to this iteration. Which systems have to be solved, and which matrix-times-vector multiplications occur within the FE-discretized iteration?