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Show, that the preconditioned Uzawa Algorithm (see formula (51) in Chapter 2 of
the Lectures) is equivalent to the classical Uzawa Algorithm (see formula (48) in
Chapter 2 of the Lectures) applied to the preconditioned system
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Let us consider the problem SX = F', where
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(see formula (61) in Chapter 2 of the Lectures). Write down in detail (for u, and
i) the preconditioned Richardson-method
o Xpr1 — X
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where D is a good preconditioner for the Schur complement BA™'BT + C, c.f.

spectral equivalence inequalities (71) from Chapter 2 of the Lectures. Which error
estimates do you know ?

with

Describe the relation of the preconditioned Richardson Method (4.62) with Ay = vG
and the Arrow-Hurwicz Algorithm (see formula (54) in Chapter 2 of the Lectures).

Provide the detailed (i.e. for the iterates u, and );) algorithm of the so-called
Bramble-Pasciak-CG which is nothing else but the preconditioned (with S) CG for
solving system SX = F (this is system (61) from Chapter 2 of the Lectures), and
provide the corresponding iteration error estimate !

Hint: The preconditioning equation SW = R has the residual (defect)
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as the right-hand side showing that the inversion of A — Ay is not necessary (see
also Exercise 2.24 from Chapter 2 of the Lecture) !

Consider the discrete mixed variational problem: Find (up, Ap) € X} X Ay, such that

a(uh, Uh) + b(Uh, )\h) = <F, Uh> Y, € Xh, (464)
b(un, pin) = (G, pn) Yy € Ay (4.65)

Let {#®} be a basis for X}, and {p®} be a basis for Aj,. Then, the discrete solutions
up and A, can be represented by

up =Y wid® A=Y ™,
i k

and the problem (4.64)—(4.65) can equivalently written as: Find (u, ) such that
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where

A= (a(¢(j)>¢(i)))i]~ , B= (b(¢(j)v90(k)))kj
Show, that under the assumptions

1. the bilinearform a is symmetric, elliptic and bounded in the whole space X
(e. g. Stokes),

2. the bilinearform b is bounded, i. e.,
[b(v, 1)| < Ba [|vllxllplla
3. the discrete inf-sup condition is satisfied, i. e.,

inf sup Mzﬁl>0,

0£un€Mn 0, X, [Vl x ([ 1enlla

where 3, is independent of h,

the matrix M = ((¢®, ¢®) ) ., is a preconditioner for the Schur-complement
S = BA™'B”, i. e, there exist positive constants v and 7 such that
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Hint: Since a is bounded and elliptic on the whole space, we can define ||-||x =
a(-,-)"/2. Show, that
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Then, use the discrete inf-sup condition and the boundedness for b(-,-).



