<u>TUTORIAL</u>

"Computational Mechanics"

to the lecture

"Numerical Methods in Continuum Mechanics 1"

Tutorial 04 Friday, April 16, 2010 (Time : $10^{15} - 11^{00}$, Room : HS 14)

3 Nonlinear Variational Problems and Variational Inequalities

- 14 Let us consider the abstract nonlinear variational problem (15) from Transparency 04 under the assumption made there. Show that there exists a unique solution $u \in V_0$ of the nonlinear variational problem (15) and that the fixed point iteration (17) converges to this solution !
- 15 Let us consider the abstract nonlinear variational problem (15) from Transparency 04 under the assumption made there, and its finite element approximation: find $u_h \in V_{0h} \subset V_0$ such that

$$a(u_h, v_h) = \langle f, v_h \rangle \quad \forall v_h \in V_{0h}.$$
(3.13)

Show the Cea-like discretization error estimate

$$\|u - u_h\|_{V_0} \le \frac{\mu_2}{\mu_1} \inf_{w_h \in V_{0h}} \|u - w_h\|_{V_0},$$
(3.14)

where the μ_1 and μ_2 are the monotonicity and the Lipschitz constants, respectively.

- 16 Show that the variational inequality (19) is equivalent to the minimization problem (20) if the bilinear form is additionally symmetric (see Transparency 05) !
- 17^{*} Show that if f and g are additionally continuous on $\overline{\Omega}$, a solution $u \in U \cap C^2(\overline{\Omega})$ of the obstacle problem (MP) \equiv (VI) satisfies the PDE (in)equilities $-\Delta u \geq f$, $u \geq g$, $(\Delta u + f)(u - g) = 0$ in Ω and u = 0 on Γ (see Transparency 06) !