TUTORIAL

"Computational Mechanics"

to the lecture

"Numerical Methods in Continuum Mechanics 1"

Tutorial 03 Friday, March 26, 2010 (Time : $10^{15} - 11^{00}$, Room : HS 14)

2 Theorem of Babuska and Aziz

Theorem 1.5: (Babuška und Aziz, 1972)

Let U and V be Hilbert spaces. Then the linear map (operator) $A : U \mapsto V^*$ is an isomorphism (bijective, A and A^{-1} continuous) if and only if (= iff) the corresponding bilinear form $a(.,.): U \times V \to R^1$ fulfills the following conditions:

1. continuity, i.e. $\exists \mu_2 = \text{const.} > 0$:

(8)
$$|a(u,v)| \le \mu_2 ||u||_U ||v||_V \ \forall u \in U, \forall v \in V,$$

2. inf-sup-condition, i.e. $\exists \mu_1 = \text{const.} > 0$:

(9)
$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \mu_1 = \text{const.} > 0,$$

3. $\forall v \in V \setminus \{0\} \exists u \in U$:

$$(10) \quad a(u,v) \neq 0.$$

Proof:

1. \Leftarrow sufficiency, i.e (8) - (9) \Longrightarrow A is an isomorphism !

- (8) $\iff A : U \mapsto V^*$ continuous (= bounded), i.e. $A \in L(U, V^*)$ and $||A||_{L(U,V^*)} \leq \mu_2$.
- A is injective (= one-to-one mapping). Indeed, assuming $Au_1 = Au_2 \iff a(u_1, v) = a(u_1, v) \ \forall v \in V$ and using (9), we obtain

$$0 = \sup_{v \in V} \frac{a(u_1 - u_2, v)}{\|v\|_V} \ge \mu_1 \|u_1 - u_2\|_U,$$

i.e. $u_1 = u_2$.

- $A: U \leftrightarrow A(U) \subset V^*$ yields $\exists A^{-1}: A(U) \mapsto U$.
- $A^{-1}: A(U) \mapsto U$ is continuous. Indeed,

$$\mu_1 \| u \|_U \le \sup_{v \in V} \frac{\langle Au, v \rangle}{\| v \|_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\| v \|_V} = \| f \|_{V^*},$$

i.e. $\mu_1 || A^{-1} f ||_U \le || f ||_{V^*} \, \forall f \in A(U),$ i.e. A^{-1} is bounded, i.e. A^{-1} is continuous.

- $A: U \leftrightarrow A(U), \ A^{-1}: A(U) \leftrightarrow U$ continuous $\Longrightarrow A(U) = \overline{A(U)}.$
- Closed Range Theorem (Theorem 1.4) yields: $A(U) = \overline{A(U)} = (\ker A^*)^0 = \{0\}^0 = V^*$ due to (10). Indeed, ker $A^* = \{v \in V : \langle A^*v, u \rangle_{U^* \times U} = \langle Au, v \rangle_{V^* \times V} = a(u, v) = 0 \forall u \in U\} = \{0\}.$

An alternative proof of the sufficiency follows from Exercises 13^{*}. This results in a constructive proof !

- 2. \implies **necessity**: see Exercises 10 12 !
- 10 Show that the fact that $A \in L(U, V^*)$ is an isomorphism yields the continuity (= boundedness) of the bilinear form $a(u, v) = \langle Au, v \rangle$! Define the boundedness constant μ_2 of the bilinear form a(.,.)!
- 11 Show that the fact that $A \in L(U, V^*)$ is an isomorphism yields the inf-sup-condition of the bilinear form $a(u, v) = \langle Au, v \rangle$! Define the inf-sup-constant μ_1 of the bilinear form a(.,.)!
- 12 Show that the fact that $A \in L(U, V^*)$ is an isomorphism also yields the third condition of the Babuška-Aziz-Theorem 1.5 !
- 13^{*} Let us assume that the sufficient conditions (8) (9) of the Babuška-Aziz-Theorem 1.5 are fulfilled. Let us consider the variational problem: find $u \in U$ such that

$$A(u,v) = \langle F, v \rangle \quad \forall v \in V, \tag{2.10}$$

where the bilinear form A(u, v) and the linear form $\langle F, v \rangle$ are defined by the identities

$$A(u,v) = \langle A^* J A u, v \rangle \quad \forall u, v \in U$$

$$(2.11)$$

and

$$\langle F, v \rangle = \langle A^* J f, v \rangle \quad \forall v \in U,$$

$$(2.12)$$

respectively. Here $A^*: V \longrightarrow U^*$ denotes the adjoint to $A: U \longrightarrow V^*$ operator and $J: V^* \longrightarrow V$ is the Riesz isomorphism between the Hilbertspaces V^* and V. Show that the linear form $\langle F, . \rangle$ and bilinear form A(., .) fulfil the assumption of the Lax-Milgram-Theorem and provide the ellipticity and the boundedness constants of the bilinear form A(., .) !