T U T O R I A L

"Computational Electromagnetics"

to the lecture
"Numerical Methods in Electrical Engineering"

Tutorial 08 Thursday, July 1, 2010 (Time: 15:30-16:15; Room: T 212)

Let $\Omega \subset \mathbf{R}^{2}$ be a simply connected, bounded Lipschitz domain, and let us define the finite element spaces

$$
\begin{align*}
W_{h} & =\left\{\left.w \in H^{1}(\Omega)\right|_{\mathbf{R}}:\left.w\right|_{T} \in P_{1}\right\} \subset H^{1}(\Omega) \tag{2.1}\\
V_{h} & =\left\{v \in H(\operatorname{curl}, \Omega):\left.v\right|_{T} \in \mathcal{N}\right\} \subset H(\text { curl }, \Omega), \tag{2.2}\\
S_{h} & =\left\{s \in L_{2}(\Omega):\left.s\right|_{T} \in P_{0}\right\} \subset L_{2}(\Omega) . \tag{2.3}
\end{align*}
$$

Theoerm 3.9 of the Lectures claims that these finite element spaces form a discrete complete sequence:

$$
\begin{equation*}
W_{h} \xrightarrow{\nabla} V_{h} \xrightarrow{\text { curl }} S_{h} \tag{2.4}
\end{equation*}
$$

27 Show that

$$
\nabla W_{h}=\left\{v_{h} \in V_{h}: \operatorname{curl}\left(v_{h}\right)=0\right\} .
$$

28 Show that

$$
\operatorname{curl} V_{h}=S_{h} .
$$

