T UTORIAL

"Computational Electromagnetics"

to the lecture
"Numerical Methods in Electrical Engineering"

Tutorial 05 Thursday, May 20, 2010 (Time: 15:30-16:15; Room: T 212)

16 Let $q \in\left[L_{2}(\Omega)\right]^{3}$ be a given vector function, and let us consider the BVP: Find $\varphi \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
(\nabla \varphi, \nabla v)_{L_{2}(\Omega)}+\int_{\Omega} \varphi d x \int_{\Omega} v d x=(q, \nabla v)_{L_{2}(\Omega)} \forall v \in H^{1}(\Omega) \tag{2.1}
\end{equation*}
$$

Show that the BVP (2.1) has a unique solution $\varphi \in H^{1}(\Omega)$ satisfying the orthogonality condition $(\varphi, 1)_{L_{2}(\Omega)}=0$, i.e. $\varphi \perp \mathbf{R}$ in $L_{2}(\Omega)$!

17 Let us again consider the BVP described in 16 . Show that $q-\nabla \varphi \in H(\operatorname{div}, \Omega)$, $\operatorname{div}(q-\nabla \varphi)=0$ in $\left[L_{2}(\Omega)\right]^{3}$ and $\operatorname{tr}_{n}(q-\nabla \varphi)=0$ in $H^{-1 / 2}(\Gamma)!$
18^{*} Show that the bilinear form $b(\cdot, \cdot): H_{0}($ curl,$\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbf{R}$ defined by the identity

$$
\begin{equation*}
b(v, \varphi)=\int_{\Omega} v \cdot \nabla \varphi d x \forall v \in H_{0}(\operatorname{curl}, \Omega), \varphi \in H_{0}^{1}(\Omega) \tag{2.2}
\end{equation*}
$$

fulfils the so-called LBB-condition, i.e. there is a positive constant β_{1} such that

$$
\begin{equation*}
\sup _{v \in H_{0}(c u r l, \Omega)} \frac{b(v, \varphi)}{\|v\|_{H(c u r l)}} \geq \beta_{1}\|\varphi\|_{H^{1}(\Omega)} \forall \varphi \in H_{0}^{1}(\Omega)! \tag{2.3}
\end{equation*}
$$

19 Let $\kappa(\cdot)$ be a real function from $L_{\infty}(\Omega)$ such that $0<\kappa_{1} \leq \kappa(x) \leq \kappa_{2}$ for all almost $x \in \Omega$ with some positive constants κ_{1} and κ_{2}. Derive the Variational Formulation (VP) of the mixed BVP

$$
\begin{aligned}
\operatorname{curl}(\nu \operatorname{curl}(u))+\kappa u & =J_{i}-\operatorname{curl}(M) \text { in } \Omega, \\
u \times n & =g_{D} \text { on } \Gamma_{D}, \\
\nu \operatorname{curl}(u) \times n & =g_{N} \text { on } \Gamma_{N},
\end{aligned}
$$

and formulate practically relevant conditions for the data $\nu, \kappa, J_{i}, M, g_{D}$ and g_{N} such that the VP has a unique solution, i.e. verify the conditions of the Lax-MilgramTheorem!

