T U T O R I A L

"Computational Electromagnetics"

to the lecture
\section*{"Numerical Methods in Electrical Engineering"}

Tutorial 04 Thursday, May 06, 2010 (Time: 15:30-16:15; Room: T 212)

013 Let $\Omega_{1}, \ldots, \Omega_{m}$ be a non-overlapping domain decomposition of Ω, i.e. $\bar{\Omega}=\cup \bar{\Omega}_{i}$, $\Omega_{i} \cap \Omega_{j}=\emptyset, i \neq j$. Let $u_{i} \in H\left(\operatorname{curl}, \Omega_{i}\right), i=1,2, \ldots, m$, such that

$$
\operatorname{tr}_{t_{i}, \Gamma_{i j}} u_{i}=\operatorname{tr}_{t_{i}, \Gamma_{i j}} u_{j} \forall \Gamma_{i j}=\partial \Omega_{i} \cap \partial \Omega_{j}: \operatorname{meas}_{d-1} \Gamma_{i j}>0 .
$$

Then the piecewise defined function

$$
u:=\left\{\left.u\right|_{\Omega_{i}}=u_{i}, i=1,2, \ldots, m\right\} \in H(\operatorname{curl}, \Omega) \text { and }\left.(\operatorname{curl} u)\right|_{\Omega_{i}}=\operatorname{curl} u_{i},
$$

for all $i=1,2, \ldots, m$.
14 Show that the inf-norm

$$
\begin{equation*}
\left\|\left\|q_{n}\right\|_{H^{-1 / 2}(\Gamma)}=\inf _{q \in H(d i v, \Omega): t r_{n} q=q_{n}}\right\| q \|_{H(d i v)} \quad \forall q_{n} \in H^{-1 / 2}(\Gamma) \tag{2.1}
\end{equation*}
$$

is equivalent to the usual $H^{-1 / 2}$-norm defined by the relation

$$
\begin{equation*}
\left\|q_{n}\right\|_{H^{-1 / 2}(\Gamma)}=\sup _{w \in H^{1 / 2}(\Gamma)} \frac{\left\langle q_{n}, w\right\rangle_{H^{-1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma)}}{\|w\|_{H^{1 / 2}(\Gamma)}} \quad \forall q_{n} \in H^{-1 / 2}(\Gamma) . \tag{2.2}
\end{equation*}
$$

15 Show the second part of Theorem 2.5, i.e. show that, for a given $q_{n} \in H^{-1 / 2}(\Gamma)$ satisfying the relation $\left\langle q_{n}, 1\right\rangle_{H^{-1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma)}=0$, there exists an extension $q \in H($ div $)$ such that

$$
\begin{equation*}
t r_{n} q=q_{n}, \operatorname{div} q=0 \text { and }\|q\|_{H(d i v)} \leq\left\|q_{n}\right\|_{H^{-1 / 2}(\Gamma)} \tag{2.3}
\end{equation*}
$$

Hint: Consider the auxiliary Neumann problem $-\Delta u=0$ in Ω and $\frac{\partial u}{\partial n}=q_{n}$ on $\Gamma=\partial \Omega$.

