T UTORIAL

"Computational Electromagnetics"

to the lecture
"Numerical Methods in Electrical Engineering"

Tutorial 03 Thursday, April 29, 2010 (Time: 15:30-16:15; Room: T 212)

2 The Variational Framework

2.1 Function Spaces and Properties.

09 Show that if there exists a week curl $c=\operatorname{curl}(u) \in\left[L_{2}(\Omega)\right]^{3}$ of a vector function $u \in\left[L_{2}(\Omega)\right]^{3}$ in the sense of Definition 2.1 then c is uniquely defined!

10 Show that if $g=\nabla w \in\left[L_{2}(\Omega)\right]^{3}$ is the weak gradient of a scalar function $w \in L_{2}(\Omega)$ in the sense of Definition 2.1 then $g \in H$ (curl) and the weak curl of g is 0 , i.e. $\operatorname{curl}(g)=\operatorname{curl} \nabla w=0$ in $\left[L_{2}(\Omega)\right]^{3}$!

11 Show that, for sufficiently smooth functions, e.g. for $u, v \in H($ curl $) \cap\left[C^{1}(\bar{\Omega})\right]^{3}$, the curl-IbyP-formula

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}(u) \cdot v d x=\int_{\Omega} u \cdot \operatorname{curl}(v) d x-\int_{\Gamma}(u \times n) \cdot v d s \tag{2.1}
\end{equation*}
$$

is valid. Hint: Use the classical IbyP-formula for the proof of (2.1)!
12 Let $\Omega_{1}, \ldots, \Omega_{m}$ be a non-overlapping domain decomposition of Ω, i.e. $\bar{\Omega}=\cup \bar{\Omega}_{i}$, $\Omega_{i} \cap \Omega_{j}=\emptyset, i \neq j$. Let $q_{i} \in H\left(\operatorname{div}, \Omega_{i}\right), i=1,2, \ldots, m$, such that

$$
\operatorname{tr}_{n_{i}, \Gamma_{i j}} q_{i}=\operatorname{tr}_{n_{i}, \Gamma_{i j}} q_{j} \forall \Gamma_{i j}=\partial \Omega_{i} \cap \partial \Omega_{j}: \operatorname{meas}_{d-1} \Gamma_{i j}>0
$$

Then the piecewise defined function

$$
q:=\left\{\left.q\right|_{\Omega_{i}}=q_{i}, i=1,2, \ldots, m\right\} \in H(\operatorname{div}, \Omega) \text { and }\left.(\operatorname{div} q)\right|_{\Omega_{i}}=\operatorname{div} q_{i}
$$

for all $i=1,2, \ldots, m$.
13 Let $\Omega_{1}, \ldots, \Omega_{m}$ be a non-overlapping domain decomposition of Ω, i.e. $\bar{\Omega}=\cup \bar{\Omega}_{i}$, $\Omega_{i} \cap \Omega_{j}=\emptyset, i \neq j$. Let $u_{i} \in H\left(\operatorname{curl}, \Omega_{i}\right), i=1,2, \ldots, m$, such that

$$
\operatorname{tr}_{t_{i}, \Gamma_{i j}} u_{i}=\operatorname{tr}_{t_{i}, \Gamma_{i j}} u_{j} \forall \Gamma_{i j}=\partial \Omega_{i} \cap \partial \Omega_{j}: \operatorname{meas}_{d-1} \Gamma_{i j}>0 .
$$

Then the piecewise defined function

$$
u:=\left\{\left.u\right|_{\Omega_{i}}=u_{i}, i=1,2, \ldots, m\right\} \in H(\operatorname{curl}, \Omega) \text { and }\left.(\operatorname{curl} u)\right|_{\Omega_{i}}=\operatorname{curl} u_{i},
$$

for all $i=1,2, \ldots, m$.

