T UTORIAL

"Computational Electromagnetics"

to the lecture
"Numerical Methods in Electrical Engineering"

Tutorial 02 Thursday, April 22, 2010 (Time: 15:30-16:15; Room: T 212)

2D magnetostatic problems lead to the solution of a non-linear boundary value problem of the form (see lectures): Find the third component $u(x)=A_{3}(x)$ of the vector potential A such that the non-linear potential equations

$$
\begin{equation*}
-\operatorname{div}(\nu(x,|\nabla u(x)|) \nabla u(x))=J_{3}(x)+\left(\frac{\partial H_{02}}{\partial x_{1}}(x)-\frac{\partial H_{01}}{\partial x_{2}}(x)\right), x=\left(x_{1}, x_{2}\right) \in \Omega \tag{1.1}
\end{equation*}
$$

holds together with appropriate boundary conditions, e.g. homogenous Dirichlet boundary conditions

$$
\begin{equation*}
u(x)=0, x=\left(x_{1}, x_{2}\right) \in \Gamma_{D}=\Gamma_{B}=\Gamma=\partial \Omega \tag{1.2}
\end{equation*}
$$

where $\Omega \subset \mathbf{R}^{2}$ is a bounded Lipschitz domain with the boundary $\Gamma=\partial \Omega$.
05 Derive the variational (weak) formulation of the non-linear boundary value problem (1.1) - (1.2), and reformulate the variational problem as a non-linear operator equation of the form $A(u)=F$ in V_{0}^{*} !
Hint: Use also integration by parts at right-hand side term arising from the permanent magnetization!

06 Let us first consider the linear case where the reluctivity $\nu=\nu(x)$ is independent of $|\nabla u(x)|$. Formulate appropriate (practically relevant) conditions for $\nu(x), J_{3}(x)$, $H_{01}(x)$, and $H_{02}(x)$ such that the assumption of the Lax-Migram theorem are fulfilled! Derive an estimate of the linear functional F appearing at the right-hand side of the variational formulation as well as of the V_{0}-ellipticity constant μ_{1} and the V_{0}-boundeness constant μ_{2} of the corresponding bilinear form $a(.,$.$) !$
07^{*} If $\nu(\cdot) \cdot: \mathbf{R}_{0}^{+} \rightarrow \mathbf{R}_{0}^{+}$is strongly monotone with the monoticity constant $m>0$, i.e.

$$
\begin{equation*}
(\nu(s) s-\nu(t) t)(s-t) \geq m(s-t)^{2}, \forall s, t \in \mathbf{R}_{0}^{+}=[0, \infty) \tag{1.3}
\end{equation*}
$$

then the non-linear operator $A(\cdot): V_{0} \rightarrow V_{0}^{*}$ defined by the weak formulation of (1.1) - (1.2), see also Exercise 05, is strongly monotone with the same monoticity constant $m>0$, i.e.

$$
\begin{equation*}
\langle A(u)-A(v), u-v\rangle \geq m\|u-v\|_{V_{0}}^{2}, \forall u, v \in V_{0}, \tag{1.4}
\end{equation*}
$$

if we choose the $H^{1}(\Omega)$ semi-norm as norm in $V_{0}=H_{0}^{1}(\Omega)$, i.e. $\|\cdot\|_{V_{0}}=|\cdot|_{H_{0}^{1}(\Omega)}$. Here and below we omit the dependence of the reluctivity ν of the spacial variable
$x=\left(x_{1}, x_{2}\right)$.
Hints: First, you have to show that the mapping $\nu(|\cdot|) \cdot: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is strongly monotone, i.e. show that, for all $p, q \in \mathbf{R}^{2}$, we have

$$
\begin{aligned}
(\nu(|p|) p-\nu(|q|) q)(p-q) & =m|p-q|^{2}+[(\nu(|p|)-m) p-(\nu(|q|)-m) q] \cdot(p-q)=\ldots \\
& \geq \ldots \\
& \geq m|p-q|^{2}
\end{aligned}
$$

Then, setting $p:=\nabla u$ and $q:=\nabla v$, you can easily prove (1.4).
08^{*} If $\nu(\cdot) \cdot: \mathbf{R}_{0}^{+} \rightarrow \mathbf{R}_{0}^{+}$is Lipschitz continuous with the Lipschitz constant $L>0$, i.e.

$$
\begin{equation*}
\mid \nu(s) s-\nu(t) t)|\leq L| s-t \mid, \forall s, t \in \mathbf{R}_{0}^{+}=[0, \infty) \tag{1.5}
\end{equation*}
$$

then the non-linear operator $A(\cdot): V_{0} \rightarrow V_{0}^{*}$ defined by the weak formulation of (1.1) - (1.2), see also Exercise 05, is Lipschitz continuous with the Lipschitz constant 3L, i.e.

$$
\begin{equation*}
\|A(u)-A(v)\|_{V_{0}^{*}} \leq 3 L\|u-v\|_{V_{0}}, \forall u, v \in V_{0} \tag{1.6}
\end{equation*}
$$

if we again choose the $H^{1}(\Omega)$ semi-norm as norm in $V_{0}=H_{0}^{1}(\Omega)$, i.e. $\|\cdot\|_{V_{0}}=|\cdot|_{H_{0}^{1}(\Omega)}$.
Hints: First, you should show that the non-negative function $\nu(\cdot)$ is bounded by the Lipschitz constant L. Second, show that

$$
\begin{aligned}
|\nu(|p|) p-\nu(|q|) q| & =|\nu(|p|)(p-q)+(\nu(|p|)-\nu(|q|)) q| \\
& \leq \cdots \\
& \leq 3 L|p-q| .
\end{aligned}
$$

for all $p, q \in \mathbf{R}^{2}$. Then, setting again $p:=\nabla u$ and $q:=\nabla v$, you can easily prove (1.6).

The strong monoticity and the Lipschitz continuity of the non-linear operator $A(\cdot)$ together with linearity and continuity of the functional F induced by the right-hand side of (1.1) (see also Exercise 06) ensure existence and uniqueness of a weak solution $u \in V_{0}$ of the non-linear operator equation $A(u)=F$ due to the Theorem of Zarantonello ($=$ generalization of Lax-Milgram to non-linear problems), see also Section 1.2.1 of the Lectures in Computational Mechanics.

