$\mathrm{SS}~2010$

<u>TUTORIAL</u>

"Computational Electromagnetics"

to the lecture

"Numerical Methods in Electrical Engineering"

Tutorial 02 Thursday, April 22, 2010 (Time: 15:30 - 16:15; Room: T 212)

2D magnetostatic problems lead to the solution of a non-linear boundary value problem of the form (see lectures): Find the third component $u(x) = A_3(x)$ of the vector potential A such that the non-linear potential equations

$$-\operatorname{div}(\nu(x,|\nabla u(x)|)\nabla u(x)) = J_3(x) + \left(\frac{\partial H_{02}}{\partial x_1}(x) - \frac{\partial H_{01}}{\partial x_2}(x)\right), \ x = (x_1, x_2) \in \Omega \quad (1.1)$$

holds together with appropriate boundary conditions, e.g. homogenous Dirichlet boundary conditions

$$u(x) = 0, \ x = (x_1, x_2) \in \Gamma_D = \Gamma_B = \Gamma = \partial\Omega,$$
(1.2)

where $\Omega \subset \mathbf{R}^2$ is a bounded Lipschitz domain with the boundary $\Gamma = \partial \Omega$.

<u>05</u> Derive the variational (weak) formulation of the non-linear boundary value problem (1.1) - (1.2), and reformulate the variational problem as a non-linear operator equation of the form A(u) = F in V_0^* !

Hint: Use also integration by parts at right-hand side term arising from the permanent magnetization !

[06] Let us first consider the linear case where the reluctivity $\nu = \nu(x)$ is independent of $|\nabla u(x)|$. Formulate appropriate (practically relevant) conditions for $\nu(x)$, $J_3(x)$, $H_{01}(x)$, and $H_{02}(x)$ such that the assumption of the Lax-Migram theorem are fulfilled ! Derive an estimate of the linear functional F appearing at the right-hand side of the variational formulation as well as of the V_0 -ellipticity constant μ_1 and the V_0 -boundeness constant μ_2 of the corresponding bilinear form a(.,.) !

$$\boxed{07^*} \text{ If } \nu(\cdot) \cdot : \mathbf{R}_0^+ \to \mathbf{R}_0^+ \text{ is strongly monotone with the monoticity constant } m > 0, \text{ i.e.}$$
$$(\nu(s)s - \nu(t)t)(s - t) \ge m(s - t)^2, \ \forall s, t \in \mathbf{R}_0^+ = [0, \infty), \tag{1.3}$$

then the non-linear operator $A(\cdot) : V_0 \to V_0^*$ defined by the weak formulation of (1.1) - (1.2), see also Exercise 05, is strongly monotone with the same monoticity constant m > 0, i.e.

$$\langle A(u) - A(v), u - v \rangle \ge m \|u - v\|_{V_0}^2, \, \forall u, v \in V_0,$$
 (1.4)

if we choose the $H^1(\Omega)$ semi-norm as norm in $V_0 = H_0^1(\Omega)$, i.e. $\|\cdot\|_{V_0} = |\cdot|_{H_0^1(\Omega)}$. Here and below we omit the dependence of the reluctivity ν of the spacial variable $x = (x_1, x_2).$

Hints: First, you have to show that the mapping $\nu(|\cdot|) \cdot : \mathbf{R}^2 \to \mathbf{R}^2$ is strongly monotone, i.e. show that, for all $p, q \in \mathbf{R}^2$, we have

$$\begin{aligned} (\nu(|p|)p - \nu(|q|)q)(p-q) &= m |p-q|^2 + [(\nu(|p|) - m)p - (\nu(|q|) - m)q] \cdot (p-q) = \dots \\ &\geq \dots \\ &\geq m |p-q|^2. \end{aligned}$$

Then, setting $p := \nabla u$ and $q := \nabla v$, you can easily prove (1.4).

 08^* If $\nu(\cdot) \cdot : \mathbf{R}_0^+ \to \mathbf{R}_0^+$ is Lipschitz continuous with the Lipschitz constant L > 0, i.e.

$$|\nu(s)s - \nu(t)t)| \le L|s - t|, \ \forall s, t \in \mathbf{R}_0^+ = [0, \infty),$$
(1.5)

then the non-linear operator $A(\cdot): V_0 \to V_0^*$ defined by the weak formulation of (1.1) - (1.2), see also Exercise 05, is Lipschitz continuous with the Lipschitz constant 3L, i.e.

$$\|A(u) - A(v)\|_{V_0^*} \le 3L \, \|u - v\|_{V_0}, \, \forall \, u, v \in V_0,$$
(1.6)

if we again choose the $H^1(\Omega)$ semi-norm as norm in $V_0 = H_0^1(\Omega)$, i.e. $\|\cdot\|_{V_0} = |\cdot|_{H_0^1(\Omega)}$. **Hints:** First, you should show that the non-negative function $\nu(\cdot)$ is bounded by the Lipschitz constant L. Second, show that

$$\begin{aligned} |\nu(|p|)p - \nu(|q|)q| &= |\nu(|p|)(p - q) + (\nu(|p|) - \nu(|q|))q| \\ &\leq \dots \\ &\leq 3L |p - q|. \end{aligned}$$

for all $p, q \in \mathbf{R}^2$. Then, setting again $p := \nabla u$ and $q := \nabla v$, you can easily prove (1.6).

The strong monoticity and the Lipschitz continuity of the non-linear operator $A(\cdot)$ together with linearity and continuity of the functional F induced by the right-hand side of (1.1) (see also Exercise 06) ensure existence and uniqueness of a weak solution $u \in V_0$ of the non-linear operator equation A(u) = F due to the Theorem of Zarantonello (= generalization of Lax-Milgram to non-linear problems), see also Section 1.2.1 of the Lectures in Computational Mechanics.