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2D magnetostatic problems lead to the solution of a non-linear boundary value problem
of the form (see lectures): Find the third component u(x) = A3(x) of the vector potential
A such that the non-linear potential equations

−div(ν(x, |∇u(x)|)∇u(x)) = J3(x) +

(
∂H02

∂x1

(x)− ∂H01

∂x2

(x)

)
, x = (x1, x2) ∈ Ω (1.1)

holds together with appropriate boundary conditions, e.g. homogenous Dirichlet boundary
conditions

u(x) = 0, x = (x1, x2) ∈ ΓD = ΓB = Γ = ∂Ω, (1.2)

where Ω ⊂ R2 is a bounded Lipschitz domain with the boundary Γ = ∂Ω.

05 Derive the variational (weak) formulation of the non-linear boundary value problem
(1.1) - (1.2), and reformulate the variational problem as a non-linear operator equa-
tion of the form A(u) = F in V ∗

0 !

Hint: Use also integration by parts at right-hand side term arising from the per-
manent magnetization !

06 Let us first consider the linear case where the reluctivity ν = ν(x) is independent
of |∇u(x)|. Formulate appropriate (practically relevant) conditions for ν(x), J3(x),
H01(x), and H02(x) such that the assumption of the Lax-Migram theorem are ful-
filled ! Derive an estimate of the linear functional F appearing at the right-hand
side of the variational formulation as well as of the V0-ellipticity constant µ1 and
the V0-boundeness constant µ2 of the corresponding bilinear form a(., .) !

07∗ If ν(·)· : R+
0 → R+

0 is strongly monotone with the monoticity constant m > 0, i.e.

(ν(s)s− ν(t)t)(s− t) ≥ m(s− t)2, ∀ s, t ∈ R+
0 = [0,∞), (1.3)

then the non-linear operator A(·) : V0 → V ∗
0 defined by the weak formulation of

(1.1) - (1.2), see also Exercise 05, is strongly monotone with the same monoticity
constant m > 0, i.e.

〈A(u)− A(v), u− v〉 ≥ m‖u− v‖2
V0
, ∀u, v ∈ V0, (1.4)

if we choose the H1(Ω) semi-norm as norm in V0 = H1
0 (Ω), i.e. ‖ · ‖V0 = | · |H1

0 (Ω).
Here and below we omit the dependence of the reluctivity ν of the spacial variable
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x = (x1, x2).

Hints: First, you have to show that the mapping ν(| · |)· : R2 → R2 is strongly
monotone, i.e. show that, for all p, q ∈ R2, we have

(ν(|p|)p− ν(|q|)q)(p− q) = m |p− q|2 + [(ν(|p|)−m)p− (ν(|q|)−m)q] · (p− q) = . . .

≥ . . .

≥ m |p− q|2.

Then, setting p := ∇u and q := ∇v, you can easily prove (1.4).

08∗ If ν(·)· : R+
0 → R+

0 is Lipschitz continuous with the Lipschitz constant L > 0, i.e.

|ν(s)s− ν(t)t)| ≤ L|s− t|, ∀ s, t ∈ R+
0 = [0,∞), (1.5)

then the non-linear operator A(·) : V0 → V ∗
0 defined by the weak formulation of (1.1)

- (1.2), see also Exercise 05, is Lipschitz continuous with the Lipschitz constant 3L,
i.e.

‖A(u)− A(v)‖V ∗
0
≤ 3L ‖u− v‖V0 , ∀u, v ∈ V0, (1.6)

if we again choose the H1(Ω) semi-norm as norm in V0 = H1
0 (Ω), i.e. ‖·‖V0 = |·|H1

0 (Ω).

Hints: First, you should show that the non-negative function ν(·) is bounded by
the Lipschitz constant L. Second, show that

|ν(|p|)p− ν(|q|)q| = |ν(|p|)(p− q) + (ν(|p|)− ν(|q|))q|
≤ . . .

≤ 3L |p− q|.

for all p, q ∈ R2.Then, setting again p := ∇u and q := ∇v, you can easily prove
(1.6).

The strong monoticity and the Lipschitz continuity of the non-linear operator A(·)
together with linearity and continuity of the functional F induced by the right-hand
side of (1.1) (see also Exercise 06) ensure existence and uniqueness of a weak solution
u ∈ V0 of the non-linear operator equation A(u) = F due to the Theorem of Zarantonello
(= generalization of Lax-Milgram to non-linear problems), see also Section 1.2.1 of the
Lectures in Computational Mechanics.
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