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2D magnetostatic problems lead to the solution of a non-linear boundary value problem
of the form (see lectures): Find the third component u(x) = Az(z) of the vector potential
A such that the non-linear potential equations

—div(v(z, |[Vu(z))Vu(z)) = Js(z) + (%Z?Z (z) — %Z‘;l (:1:)) cx=(z1,22) € (1.1)

holds together with appropriate boundary conditions, e.g. homogenous Dirichlet boundary
conditions
wz) =0, = (x1,29) € 'p=Tp =T =09, (1.2)

where Q ¢ R? is a bounded Lipschitz domain with the boundary I'" = 9.

Derive the variational (weak) formulation of the non-linear boundary value problem

(1.1) - (1.2), and reformulate the variational problem as a non-linear operator equa-
tion of the form A(u) = F in V| !

Hint: Use also integration by parts at right-hand side term arising from the per-
manent magnetization !

Let us first consider the linear case where the reluctivity v = v(x) is independent
of |Vu(z)|. Formulate appropriate (practically relevant) conditions for v(z), J3(x),
Hoi(z), and Hpe(x) such that the assumption of the Lax-Migram theorem are ful-
filled ! Derive an estimate of the linear functional F' appearing at the right-hand
side of the variational formulation as well as of the Vj-ellipticity constant p; and
the Vp-boundeness constant uy of the corresponding bilinear form af(.,.) !

If v(-)-: RZ — Ry is strongly monotone with the monoticity constant m > 0, i.e.
(v(s)s —v(t)t)(s —t) > m(s —t)% Vs,t € RF =[0,00), (1.3)

then the non-linear operator A(-) : Vo — V;° defined by the weak formulation of
(1.1) - (1.2), see also Exercise 05, is strongly monotone with the same monoticity
constant m > 0, i.e.

(A(u) — A(v),u —v) > m|u—olfy,, Yu,v €V, (1.4)

if we choose the H'(Q2) semi-norm as norm in V5 = Hg(Q), ie. |- vy = |- 1)
Here and below we omit the dependence of the reluctivity v of the spacial variable



x = (x1,22).

Hints: First, you have to show that the mapping v(| - |)- : R* — R? is strongly
monotone, i.e. show that, for all p, ¢ € R?, we have

w(lphp —v(la)a)p—q) = mlp—ql*+[(v(lpl) —m)p — (v(lg]) —m)q] - (p—q) = ...

(AVARVS

mp —q*.
Then, setting p := Vu and ¢ := Vv, you can easily prove (1.4).
If v(-)- : R§ — Ry is Lipschitz continuous with the Lipschitz constant L > 0, i.e.
lv(s)s —v(t)t)| < L|s —t|, Vs, t € Ry = [0,00), (1.5)

then the non-linear operator A(-) : Vy — V" defined by the weak formulation of (1.1)
- (1.2), see also Exercise 05, is Lipschitz continuous with the Lipschitz constant 3L,
ie.

[A(u) = A(v)]

if we again choose the H'(€2) semi-norm as norm in Vo = Hy(Q), i.e. [|-|lvy = || m1(0)-

vy < 3LJu— vy, Yu,v € Vg, (1.6)

Hints: First, you should show that the non-negative function v(-) is bounded by
the Lipschitz constant L. Second, show that

v (Ipl)p — v(lal)dl v () (P = @) + (v(lpl) = v(lg)))dl

< L
< 3LIp—ql.

for all p,q € R2Then, setting again p := Vu and ¢ := Vo, you can easily prove
(1.6).

The strong monoticity and the Lipschitz continuity of the non-linear operator A(-)
together with linearity and continuity of the functional F' induced by the right-hand
side of (1.1) (see also Exercise 06) ensure existence and uniqueness of a weak solution
u € Vp of the non-linear operator equation A(u) = F' due to the Theorem of Zarantonello
(= generalization of Lax-Milgram to non-linear problems), see also Section 1.2.1 of the
Lectures in Computational Mechanics.



