Possible Questions for the Oral Examination as a Road Map for the Preparation to the Examination

1. Elektromagnetic fields are described by Maxwell's equations

$$
\begin{align*}
\operatorname{curl} H & =J+\frac{\partial D}{\partial t} \tag{1}\\
\operatorname{div} B & =0 \tag{2}\\
\operatorname{curl} E & =-\frac{\partial B}{\partial t} \tag{3}\\
\operatorname{div} D & =\varrho \tag{4}
\end{align*}
$$

and the constitutive relations

$$
\begin{align*}
B & =\mu H+\mu_{0} M \tag{5}\\
D & =\varepsilon E+P \tag{6}\\
J & =\sigma E+J_{i} \tag{7}
\end{align*}
$$

Give the integral formulations of Maxwell's equations ! Derive the vector potential formulation and the E-field based formulation!
2. Derive the interface conditions for the $B-, H-, D-$, and E-fields from the integral formulations of Maxwell's equations ! What do you know about possible boundary, initial and radiation conditions!
3. Which special electromagnetic regimes do you know ? Derive the equations describing these special electromagnetic regimes from the full Maxwell equations !
4. Derive the vector potential formulation for the 3 D magnetostatic case from the full Maxwell equations ! When can you use Biot-Savart's formula ? Derive Biot-Savart's formula! Derive the magnetostatic equations for the 2D case!
5. What do you know about distributional and weak derivatives? Define the weak gradient, curl and div (Definition 2.1) ! Define the function space $H(g r a d), H(c u r l)$ and $H(d i v)$ and provide some basic properties of these spaces!
6. What do you know about traces of functions from $H^{1}(\Omega)$? Discuss the trace theorem and the inverse trace theorem (extension theorem)! Prove Lemma 2.3!
7. What do you know about traces of functions from $H($ div $)$? Discuss the trace theorem (Theorem 2.6) and the inverse trace theorem (extension theorem $=$ Theorem 2.5) ! Prove the statement formulated in Exercise 2.6!
8. What do you know about traces of functions from $H(c u r l)$? Discuss the trace theorem (Theorem 2.6)! Prove the statement formulated in Exercise 2.8 !
9. Discuss the solvability of the general curl-curl-equation for the case $\kappa \in R^{+}$(Section 2.2.1)!
10. Discuss the solvability of the general curl-curl-equation for the magnetostatic case $\kappa=0$ (Section 2.2.2) !
11. Discuss the solvability of the general curl-curl-equation for the case $\kappa=\kappa_{r}+i \kappa_{i}$ with $\kappa_{i} \neq 0$ (Section 2.2.3)!
12. Discuss the solvability of the general curl-curl-equation for the case $\kappa \in R^{-}$(Section 2.2.4) !
13. What do you know about the regularity (Section 2.2.5) !
14. Define and discuss the lowest-order triangular edge element (Section 3.2.1: Def. 3.4, Properties 3.5, Lemma 3.6, Exercise 3.7, Remark 3.8, Theorem 3.9)!
15. Explain the mapping priciple for the lowest-order triangular edge element (Section 3.2.2: Lemma 3.10) and discuss the implementation aspects (Section 3.2.3)!
16. Define the "nodal" interpolation operator I_{h}, show that $I_{h}^{2}=I_{h}$, show the transformation identity for the edge interpolation operator (Lemma 3.12), and the L_{2} interpolation error estimate (Theorem 3.13) !
17. Discuss the commuting diagram (Theorems 3.14 and 3.15), and show the $H(c u r l)$ interpolation error estimate (Theorem 3.16)!
18. Discuss the tetrahedral edge (Nédélec) and Raviart-Thomas finite elements and the corresponding finite element spaces (Section 3.3) !
19. Show the H (curl) discretization error estimate under the assumptions formulated in Theorem 3.21!

