Monday, 25 January 2010, 10.15–11.45, T 212

The definitions of consistency, stability, and convergence depend on the underlying norms. In the following we use $\|\cdot\|_{X_{\tau}}$ instead of $\|\cdot\|_{Y_{\tau}}$. Using Exercise 53 and following your lecture notes, show the estimate

$$||e_{\tau}||_{X_{\tau}} \leq C ||\psi_{\tau}||_{X_{\tau}}.$$

Furthermore, show that if the exact solution fulfills $u \in C^2([0, T], \mathbb{R}^n)$, then

$$\|\psi_{\tau}\|_{X_{\tau}} \leq K \tau,$$

and conclude a corresponding estimate for the global error.

Hint: $K = \max_{s \in [0, T]} ||u''(s)|| < \infty$.

60 Consider the 2-stage explicit Runge-Kutta method

$$g_1 = u_j,$$

$$g_2 = u_j + \tau_j a_{21} f(t, g_1),$$

$$u_{j+1} = u_j + \tau_j [b_1 f(t_j, g_1) + b_2 f(t_j + c_2 \tau_j, g_2)],$$

for the solution of the initial value problem to find $u:[0,T]\to\mathbb{R}$ such that

$$u'(t) = f(t, u(t)) \quad \forall t \in (0, T),$$

 $u(0) = u_0,$

for given $f:[0,T]\times\mathbb{R}\to\mathbb{R}$ sufficiently smooth, and $u_0\in\mathbb{R}$. Provide a Taylor series expansion of the *local error* of the form

$$d(t+\tau) = A_0 + \tau A_1 + \tau^2 A_2 + \tau^3 A_3 + \mathcal{O}(\tau^4),$$

with the expressions A_1 , A_2 , and A_3 only depending on a_{21} , b_1 , b_2 , c_2 , f and its derivatives, but not on τ .

Continue exercise $\boxed{60}$ and find necessary and sufficient conditions on the coefficients a_{21} , b_1 , b_2 , and c_2 such that the consistency order of the method is at least 2, i.e., that for all sufficiently smooth functions f, we have

$$A_0 = A_1 = A_2 = 0.$$

[62] Consider the classical Runge-Kutta method of order 4,

Show that this method has the stability function

$$R(z) \ = \ 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \frac{1}{24}z^4 \, ,$$

and that $e^z - R(z) = \mathcal{O}(z^5)$ as $z \to 0$.

Programming (in C, C⁺⁺, or matlab)

Consider the problem to find $u:[0,T]\to\mathbb{R}$ such that

$$u'(t) = -50 u(t)$$
 $\forall t \in (0, T),$
 $u(0) = 1,$

with T=1. Note that the exact solution is given by $u(t)=e^{-50\,t}$.

- Implement the *explicit* Euler method for the above problem with fixed time steps. Run it for the choices $\tau = 1/60, 1/30, 1/26, 1/24,$ and 1/20. For each run, plot the exact and numerical solution.
- Implement the *implicit* Euler method for the above problem with fixed time steps. Run it for the same choices of τ as in exercise $\boxed{63}$. For each run, plot the exact and numerical solution.