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We consider the abstract problem: find u ∈ H1
(
(0, T ), V ;H

)
such that

d

dt
(u(t), v)H︸ ︷︷ ︸
=〈u′(t),v〉

+a(u(t), v) = 〈F (t), v〉 ∀v ∈ V ∀t ∈ (0, T ) a.e.,

u(0) = u0 ,

(9.1)

for given u0 ∈ H and F ∈ L2
(
(0, T ), V ∗), where (V,H, V ∗) is an evolution triple, i. e.,

• V and H are separable Hilbert spaces,

• V ⊂ H and V is dense in H,

• there exists a constant c > 0 such that ‖v‖H ≤ c ‖v‖V for all v ∈ V .

47 Show that for all λ ∈ R: the function u ∈ H1
(
(0, T ), V ;H

)
is a solution of (9.1) if

and only if uλ ∈ H1
(
(0, T ), V ;H) solves

d

dt
(uλ(t), v)H + aλ(uλ(t), v) = 〈Fλ(t), v〉 ∀v ∈ V ∀t ∈ (0, T ) a.e.,

uλ(0) = u0 ,
(9.2)

where

uλ(t) = e−λtu(t), aλ(w, v) = a(w, v) + λ(w, v)H , Fλ(t) = e−λtF (t).

Hint: use the definition of the weak time derivative u′(t) to compute u′λ(t).

48 Show that Theorem 2.9 from your lecture notes holds also when we replace the
assumption of coercivity by the weaker assumption that there exist constants λ ∈ R
and µ1 > 0 such that

a(v, v) + λ ‖v‖2H ≥ µ1 ‖v‖2V ∀v ∈ V

(such an inequality is called G̊arding inequality).

Hint: use Exercise 47 .

49 Consider the bilinear form

a(w, v) :=

∫ 1

0

a(x)
∂w

∂x
(x)

∂v

∂x
(x) + b(x)

∂w

∂x
(x) v(x) + c(x)w(x) v(x) dx

in H1(0, 1) with a, b, c ∈ L∞(0, 1), where a0 := infx∈(0,1) a(x) > 0. Show the G̊arding
inequality: there exist constants λ ∈ R and µ1 > 0 such that

a(v, v) + λ ‖v‖2L2(0,1) ≥ µ1 ‖v‖2H1(0,1) ∀v ∈ H1(0, 1).

Hint: Choose λ such that the assumptions of Excercise 08 (Tutorial 2) hold for
the bilinear form aλ(w, v) := a(w, v) + λ (w, v)L2(0,1).
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50 Let C1([0, T ], V ) denote the space of continuous functions in [0, T ] with values in the
Hilbert space V that have a continuous classical derivative, i. e., for v ∈ C1([0, T ], V )
the limit

v′(t) := lim
τ→0

1

τ

(
v(t+ τ)− v(t)

)
exists for all t ∈ [0, T ] and the function v′ : [0, T ]→ V is continous.
Show that for all s, t ∈ [0, T ] and for all v ∈ C1([0, T ], V ):

1

2

(
v(t), v(t)

)
H

=
1

2

(
v(s), v(s)

)
H

+

∫ t

s

(
v′(σ), v(σ)

)
H
dσ. (9.3)

Hint: Prove and use the identity

1

2

[(
v(σ), v(σ)

)
H

]′
=
(
v′(σ), v(σ)

)
H
.

51 Prove Lemma 2.7, i. e., show that there exists a constant C > 0 with

max
t∈[0, T ]

‖v(t)‖H ≤ C ‖v‖H1((0,T ),V ;H) ∀v ∈ C1([0, T ], V ).

Hint: Integrate identity (9.3) with respect to s over [0, T ]. Note that ‖v′‖2L2((0,T ),V ∗)

is the integral over the (square of the) V ∗-norm of the mapping w 7→ (v′(t), w)H .
Show and use that

(v′(σ), w)H ≤ ‖v′(σ)‖V ∗ ‖w‖V ≤
1

2

[
‖v′(σ)‖2V ∗ + ‖w‖2V ∗

]
∀w ∈ V.

52 Assume that a(·, ·) is bounded and coercive with coercivity constant µ1 > 0. Show
that

‖θh(t)‖H ≤ e−µ1c−2 t ‖θh(0)‖H +

∫ t

0

e−µ1c−2(t−s) ‖ρ′h(s)‖H ds,

where θh and ρh are defined according to the lecture notes.
Hint: Bound the term d

dt
‖θh(t)‖H as in the lecture notes but use the coercivity of

a(·, ·). Multiply the entire estimate by eµ1c−2 t and investigate the term

d

dt

[
eµ1c−2 t ‖θh(t)‖H

]
in a side computation.
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