Numerical Methods for Partial Differential Equations WS 2009 / 2010
Tutorial 7 Monday, 7 December 2009, 10.15-11.45, T 212

Let A € R™™ be a symmetric matrix. Show that for M, = I — 7 A with 7 € R:
M.|le, = 1—7)A = :
Mo, = max [1=7] = q(7)

where ¢(7) = max (|1 — 7 Apax(A) |, |1 =7 Amin(A4)]).

Let A € R™" be a symmetric matrix with at least one negative and one positive
eigenvalue (A is indefinite). Show that

max |1 -7\ > 1 V1 # 0.
Ao (A)

Let A € R™" be a symmetric matrix and let A_ < 0 and A} > 0 be two eigenvalues
with the corresponding eigenvectors e_ and e, respectively. Show that there is no
choice for the parameter 7 € R such that the following Richardson’s method (with
special initial value) converges.

To = T+e_+eq
Tyl — $k+T(b—A$k) fOI‘k:O,l,...

Here x = A~'b is the exact solution.
In the lecture, we showed for the CG method that
xp € xo+Kr(A, rg) and 7 L Kp(A, ro),
where | means orthogonality in the corresponding inner product.

We consider now the GMRES method, which can also be applied to indefinite ma-
trices. There, the iterates are constructed such that

xp € o+ Ki(A, o) and ||b— Azglle, = min 16— Aylle, -
yexo+Ki (A, 10)

Show that in this case
Tk 1 AICk(A, 7“0),

where | means {s-orthogonality.
Hint: Rewrite the above minimization problem as an equivalent variational problem.

Programming;:

Write a function CG(|A, [x, |b, |[C, [max_iter, Jtol) to solve the linear sys-
tem
Ax = b

with the preconditioned CG method. The parameter specification is the same as in
Exercise (Richardson’s method).

Hint: Use cg.hh (download or see next page) and rewrite it for your own purposes.

Solve the problem given in Exercise (see Tutorial 5) with the Jacobi-
preconditioned CG method. Try different equidistant meshes (h = 1/10, h = 1/20,
h =1/100, etc.) and report the number of iterations to reach the relative accuracy
e=1075.

13

File cg.hh

#ifndef __CG_H
#define __CG_H

// Iterative template routine -- CG

//

// RICHARDSON solves the symmetric positive definite linear

// system Ax=b using the preconditioned conjugate gradient methd.
// The returned value indicates convergence within

// max_iter iterations (return value 0)

// or no convergence within max_iter iterations (return value 1)
// Upon successful return (0), the output arguments have the

// following values:

// x: computed solution
// mat_iter: number of iterations to satisfy the stopping criterion
// tol: residual after the final iteration

template <class MATRIX, class VECTOR, class PRECONDITIONER, class REAL>
int
CG (const MATRIX & A, VECTOR & x, const VECTOR & b,

const PRECONDITIONER & M, int & max_iter, REAL & tol)

REAL resid;

VECTOR p(b.size ());

VECTOR z(b.size ());

VECTOR q(b.size ());

REAL alpha, beta, rho, rho_1;
REAL normb = norm (b);
VECTOR r = b - A * x;

if (normb == 0.0) normb = 1;
resid = norm (r) / normb;

if (resid <= tol)
{
tol = resid;
max_iter = 0;
return O;

for (int i=1; i<=max_iter; i++)

z = M.solve (r);
rho = inner_product (r, z);

if (i==1)
{

P =2z
}
else
{

beta = rho / rho_1;
P = z + beta * p;

14

q=4A*p;
alpha = rho / inner_product (p, q);

x += alpha * p;
r -= alpha * q;

resid = norm(r) / normb;

if (resid <= tol)
{
tol = resid;
max_iter = 1i;
return O;

¥

rho_1 = rho;

tol = resid;
return 1;

15

