
Numerical Methods for Partial Differential Equations WS 2009 / 2010
Tutorial 7 Monday, 7 December 2009, 10.15–11.45, T 212

35 Let A ∈ Rn×n be a symmetric matrix. Show that for Mτ = I − τ A with τ ∈ R:

‖Mτ‖`2 = max
λ∈σ(A)

|1− τ λ| = q(τ),

where q(τ) = max
(
|1− τ λmax(A)|, |1− τ λmin(A)|

)
.

36 Let A ∈ Rn×n be a symmetric matrix with at least one negative and one positive
eigenvalue (A is indefinite). Show that

max
λ∈σ(A)

|1− τ λ| > 1 ∀τ 6= 0.

37 Let A ∈ Rn×n be a symmetric matrix and let λ− < 0 and λ+ > 0 be two eigenvalues
with the corresponding eigenvectors e− and e+, respectively. Show that there is no
choice for the parameter τ ∈ R such that the following Richardson’s method (with
special initial value) converges.

x0 = x+ e− + e+

xk+1 = xk + τ(b− Axk) for k = 0, 1, . . .

Here x = A−1b is the exact solution.

38 In the lecture, we showed for the CG method that

xk ∈ x0 +Kk(A, r0) and rk ⊥ Kk(A, r0),

where ⊥ means orthogonality in the corresponding inner product.

We consider now the GMRES method, which can also be applied to indefinite ma-
trices. There, the iterates are constructed such that

xk ∈ x0 +Kk(A, r0) and ‖b− Axk‖`2 = min
y∈x0+Kk(A, r0)

‖b− Ay‖`2 .

Show that in this case
rk ⊥ AKk(A, r0),

where ⊥ means `2-orthogonality.
Hint: Rewrite the above minimization problem as an equivalent variational problem.

Programming:

39 Write a function CG(↓A, lx, ↓b, ↓C, lmax iter, ltol) to solve the linear sys-
tem

Ax = b

with the preconditioned CG method. The parameter specification is the same as in

Exercise 33 (Richardson’s method).
Hint: Use cg.hh (download or see next page) and rewrite it for your own purposes.

40 Solve the problem given in Exercise 28* (see Tutorial 5) with the Jacobi-
preconditioned CG method. Try different equidistant meshes (h = 1/10, h = 1/20,
h = 1/100, etc.) and report the number of iterations to reach the relative accuracy
ε = 10−6.

13

File cg.hh

#ifndef __CG_H
#define __CG_H

// Iterative template routine -- CG
//
// RICHARDSON solves the symmetric positive definite linear
// system Ax=b using the preconditioned conjugate gradient methd.
// The returned value indicates convergence within
// max_iter iterations (return value 0)
// or no convergence within max_iter iterations (return value 1)
// Upon successful return (0), the output arguments have the
// following values:
// x: computed solution
// mat_iter: number of iterations to satisfy the stopping criterion
// tol: residual after the final iteration

template <class MATRIX, class VECTOR, class PRECONDITIONER, class REAL>
int
CG (const MATRIX & A, VECTOR & x, const VECTOR & b,

const PRECONDITIONER & M, int & max_iter, REAL & tol)
{
REAL resid;
VECTOR p(b.size ());
VECTOR z(b.size ());
VECTOR q(b.size ());
REAL alpha, beta, rho, rho_1;
REAL normb = norm (b);
VECTOR r = b - A * x;

if (normb == 0.0) normb = 1;
resid = norm (r) / normb;

if (resid <= tol)
{
tol = resid;
max_iter = 0;
return 0;

}

for (int i=1; i<=max_iter; i++)
{
z = M.solve (r);
rho = inner_product (r, z);

if (i==1)
{

p = z;
}

else
{

beta = rho / rho_1;
p = z + beta * p;

14

}

q = A * p;
alpha = rho / inner_product (p, q);

x += alpha * p;
r -= alpha * q;

resid = norm(r) / normb;

if (resid <= tol)
{

tol = resid;
max_iter = i;
return 0;

}

rho_1 = rho;
}

tol = resid;
return 1;

}

15

