
Numerical Methods for Partial Differential Equations WS 2009 / 2010
Tutorial 6 Monday, 30 November 2009, 10.15–11.45, T 212

29 Let Ω be a bounded domain in R2 with sufficiently smooth boundary Γ and the
outward unit normal vector n. Let ΓD, ΓN , ΓR ⊂ Γ be disjoint such that ΓD ∪
ΓN ∪ ΓR = Γ. Derive the variational formulation for the following boundary value
problem: Find u : Ω→ R such that

−∆u = f in Ω,

u = gD on ΓD ,

∂u

∂n
= gN on ΓN ,

∂u

∂n
= α

(
gR − u

)
on ΓR ,

for given f , gD, gN , gR, and α. In particular specify V , Vg and V0.

30 Let T̂ := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x + y ≤ 1} denote the two-dimensional
reference element with the corner points ξ0 = (0, 0), ξ1 = (1, 0), and ξ2 = (0, 1).

Let ϕ̂0, ϕ̂1, and ϕ̂2 denote affine linear functions on T̂ that fulfill

ϕ̂i(ξj) = δij ∀i, j ∈ {0, 1, 2}.

Derive an explicit formula for ϕ̂0, ϕ̂1, and ϕ̂2 in terms of ξ = (ξ(1), ξ(2)).

ξ

ξ ξ
0 1

2

T
^

Programming
Even though we have an optimal solver (Gauss/Thomas) for our one-dimensional model
problem, we will now turn to iterative solvers for the same problem. Keep in mind that
all the concepts we use in the following can be generalized to higher dimensions; we just
stay in 1D to make the programming simpler. With a working Gauss/Thomas solver, you
can check if your iterative solver has converged to the correct solution.

31 Write a function Mult(↓matrix, ↓vector, ↑result) that computes the matrix-
vector product: For a given tridiagonal matrix matrix=Kh and a vector vector=vh,
the function should produce result=Kh vh.

For advanced programmers: If you use your own vector-class, you may try out C++’s
operator overloading to allow statements like x = A * y;

inline Vector operator* (const Matrix& mat, const Vector& vec)
{
Vector res(vec.size());
Mult (mat, vec, res);
return res;

}

10



32 Define a C++ class Preconditioner that implements the Jacobi preconditioner
Ch = Dh = diag (Kh). Write a function (or a member function of the class
Preconditioner that solves the linear system

Chwh = rh ,

for a given vector rh.

33 Write a function Richardson(↓A, lx, ↓b, ↓C, lmax iter, ltol) to solve the
linear system

Ax = b

by the preconditioned Richardson method

x(0) given

x(k+1) = x(k) + C−1(b− Ax(k))

with the stopping criterion

‖ b− Ax(k)︸ ︷︷ ︸
=r(k)

‖`2 ≤ ε ‖b‖`2 .

Input:
A=A
x=x(0)

b=b
C=C
max iter . . . given maximal number of iterations
tol=ε . . . given relative accuracy

Output:
x=x(n) . . . approximate solution
max iter=n . . . number of iterations that were performed
tol . . . relative accuracy that was reached

Hint: use Richardson.hh (download from website or see next page) and rewrite it
for your own purposes.

34 Use your program to solve the problem given in Exercise 28* (see Tutorial 5) with
the preconditioned Richardson method and the Jacobi preconditioner. Try different
equidistant meshes (h = 1/10, h = 1/20, h = 1/100, etc.) and report the number
of iterations to reach the relative accuracy ε = 10−6.

11



File richardson.hh

#ifndef __RICHARDSON_H
#define __RICHARDSON_H

// Iterative template routine -- preconditioned Richardson
//
// RICHARDSON solves the linear system Ax=b using
// the preconditioned richardson iteration.
// The returned value indicates convergence within
// max_iter iterations (return value 0)
// or no convergence within max_iter iterations (return value 1)
// Upon successful return (0), the output arguments have the
// following values:
// x: computed solution
// mat_iter: number of iterations to satisfy the stopping criterion
// tol: residual after the final iteration

template <class MATRIX, class VECTOR, class PRECONDITIONER, class REAL>
int
RICHARDSON (const MATRIX & A, VECTOR & x, const VECTOR & b,

const PRECONDITIONER & M, int & max_iter, REAL & tol)
{
REAL resid;
VECTOR z(b.size ());
REAL normb = norm (b);
VECTOR r = b - A * x;

if (normb == 0.0) normb = 1;
resid = norm (r) / normb;

if (resid <= tol)
{
tol = resid;
max_iter = 0;
return 0;

}

for (int i=1; i<max_iter; i++)
{
z = M.solve (r);
x += z;
r = b - A * x;
resid = norm(r) / normb;

if (resid <= tol)
{
tol = resid;
max_iter = i;
return 0;

}
}

tol = resid;
return 1;

}

#endif // __RICHARDSON_H

12


