Monday, 23 November 2009, 10.15–11.45, T 212

22 Let \mathcal{T}_h be an equidistant subdivision of (0, 1). Show (analogously to the L^2 -estimate the lecture) that there exists a constant $C_1 > 0$ independent of h, such that

$$|v - I_h v|_{H^1(0,1)} \le C_1 h ||v''||_{L^2(0,1)} \quad \forall v \in C^2[0,1].$$
 (5.1)

- Show that all expressions in (5.1) are continuous with respect to the H^2 -norm. Hint: Show that the expressions are Lipschitz-continuous. Then (5.1) follows for all $v \in H^2(0, 1)$ due to the density of $C^2[0, 1]$ in that space (closure principle).
- Let \mathcal{T}_h be an equidistant subdivision of (0, 1), let V_{0h} be the space of continuous piecewise affine linear functions that vanish at 0, and let K_h denote the stiffness matrix corresponding to our model problem. Show that there exists a constant $C_2 > 0$ independent of h such that

$$\kappa(K_h) \geq C_2 h^{-2}.$$

Hint: Use the Rayleigh quotient for the special vector $\underline{v}_h = (1, 0, \dots, 0)^{\top}$ in order to obtain a lower bound for $\lambda_{\max}(K_h)$. For an upper bound of $\lambda_{\min}(K_h)$ use $\underline{v}_h = (h, 2h, 3h, \dots, 1)^{\top}$.

Let \mathcal{T}_h be an equidistant subdivision of (0, 1) and let V_{0h} be the space of continuous piecewise affine linear functions vanising at 0. Let M_h denote the mass matrix for our model problem. Show that there exists a constant $C_3 > 0$ independent of h such that

$$\kappa(M_h) \leq C_3$$
.

Programming

Write a function ImplementDirichletBC(\downarrow i, \downarrow g, \uparrow matrix, \uparrow vector) to implement the Dirichlet boundary condition

$$u(x_i) = g_D(x_i)$$

for a given value $g=g_D(x_i)$ at the boundary node x_i identified by the index i=i. The function ImplementDirichletBC must update the stiffness matrix matrix and the load vector vector, after applying

AssembleStiffnessMatrix AssembleLoadVector ImplementRobinBC

Here, instead of *deleting* rows or columns from the matrix, we stay with the $(n_h + 1) \times (n_h + 1)$ matrix using the following technique.

Suppose that applying AssembleStiffnessMatrix, AssembleLoadVector and ImplementRobinBC yields the linear system

$$\begin{pmatrix} K_{00} & K_{01} & K_{02} & K_{03} \\ K_{10} & K_{11} & K_{12} & K_{13} \\ K_{20} & K_{21} & K_{22} & K_{23} \\ K_{30} & K_{31} & K_{32} & K_{33} \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{pmatrix}$$

and that we want to impose the Dirichlet boundary condition $u_0 = u(x_0) = g_D(x_0) = g_0$. Then, we can replace the first equation by $K_{00} u_0 = K_{00} g_0$ and substitute u_0 by g_0 in the remaining equations. The modified system reads

$$\begin{pmatrix} K_{00} & 0 & 0 & 0 \\ 0 & K_{11} & K_{12} & K_{13} \\ 0 & K_{21} & K_{22} & K_{23} \\ 0 & K_{31} & K_{32} & K_{33} \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} K_{00} g_0 \\ f_1 - K_{10} g_0 \\ f_2 - K_{20} g_0 \\ f_3 - K_{30} g_0 \end{pmatrix}.$$

Implement this in an efficient way.

- Implement an efficient Gauss/Thomas type solver for our system $K_h \underline{u}_h = \underline{f}_h$. Hint 1: Exploit the tridiagonal structure (and maybe also the symmetry). Hint 2: If you are lazy, take your inspiration from http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
- 28* (BONUS exercise)

Solve the model problem

$$-u''(x) = f(x) \quad \forall x \in (0, 1),$$

$$u(0) = g_D$$

$$u'(1) = \alpha (g_R - u(1)),$$

with f(x) = 8, $g_D = -1$, $\alpha = 1$, $g_R = 1$ for different (equidistant) meshes (h = 1/10, h = 1/20, h = 1/100 etc.) and visualize the solution (e.g., using gnuplot, matlab, etc.).