
Numerical Methods for Partial Differential Equations WS 2009 / 2010
Tutorial 4 Monday, 16 November 2009, 10.15–11.45, T 212

16 Let

K̂ =

(
1 −1
−1 1

)
, M̂ =

(
1/3 1/6
1/6 1/3

)
, D̂ =

(
1 0
0 1

)
.

Show that
1

6
D̂ ≤ M̂ and K̂ ≤ 2 D̂ .

17 Consider the one-dimensional boundary value problem

−u′′(x) = f(x) ∀x ∈ (0, 1)

u(0) = g0 , u(1) = g1 .

Let Kh denote the stiffness matrix obtained by the finite element method using the
Courant elements on a subdivision 0 = x0 < x1 < · · · < xNh

= 1.

Show that
mink h

2
k

6 c2F
Dh ≤ Kh ≤ 2Dh ,

where Dh = diag (Kh), cF is the constant arising in Friedrichs’ inequality, and
hk = xk − xk−1.

Hint: Use that Dh can be split into element contributions D
(1)
h = K

(1)
h = 1

h1
and

D
(k)
h = diag (K

(k)
h ) = 1

hk
diag (K̂) = 1

hk
D̂.

Programming

18 Define a data type Mesh which contains all the information on the mesh Th that is
necessary for the computation of Kh.

Consider first the case ΓD = ∅, ΓR = {0, 1}, and α(x) = 0, which corresponds to
homogeneous Neumann boundary conditions (i. e., you needn’t worry about any boundary
conditions so far).

19 Write a function AssembleStiffnessMatrix(↓mesh, ↑matrix) that assembles the
global (nh + 1)× (nh + 1) stiffness matrix matrix = Kh for a given subdivision
mesh = Th of Ω.

Hint: Set Kh = 0, then start with K
(1)
h and loop over all elements Tk to update

the matrix Kh. On each element Tk, use the function ElementStiffnessMatrix to
compute K

(k)
h and pay attention to put the entries of K

(k)
h at the correct positions

in the global matrix Kh.

20 Write a function AssembleLoadVector(↓(*f)(x), ↓mesh, ↑vector) that assem-
bles the global (nh + 1)-dimensional load vector vector = f

h
for a given mesh

mesh = Th of Ω.

Hint: Set f
h

= 0, then start with f (1)

h
and loop over all elements Tk to update the

vector f
h
. On each element Tk, use the function ElementLoadVector to compute

f (k)

h
and pay attention to add the entries in the right place.

6



The stiffness matrix and load vector above are now modified, such that we obtain the
correct system for other types of boundary conditions, here of Robin/Neumann type.

21 Write a function ImplementRobinBC(↓i, ↓g, ↓alpha, lmatrix, lvector) to im-
plement the Robin boundary condition

u′(xi) = α(xi)
(
gR(xi)− u(xi)

)
for given values g=gR(xi), alpha=α(xi) at the boundary node xi identified by the in-
dex i=i. The function ImplementRobinBC must update the stiffness matrix matrix

and the load vector vector, previously computed by AssembleStiffnessMatrix

and AssembleLoadVector, respectively, in the case of homogeneous Neumann con-
ditions.

Test the implemented data types and functions using some simple examples, e. g., consider
equidistant nodes xi for different values of nh, and simple functions f(x) = 1, f(x) = x,
etc.

7


