
Numerical Methods for Partial Differential Equations WS 2009 / 2010
Tutorial 3 Monday, 9 November 2009, 10.15–11.45, T 212

10 Show Poincaré’s inequality : There exists a constant CP > 0 such that

‖v‖L2(0, 1) ≤ CP

{(∫ 1

0

v(x) dx
)2

+ |v|2H1(0, 1)

}1/2

∀v ∈ H1(0, 1) .

Hint: Integrate the identity

v(y) = v(x) +

∫ y

x

v′(z) dz

over the whole interval (0, 1) with respect to x. The rest of the proof is then similar
to the one of Friedrichs’ inequality (see your lecture notes).

11 Take a look at exercise 06 on the pure Neumann problem and show that the weak
formulation (2.4) has a solution if and only if (2.5) holds, and that the solution is
unique up to an additive constant.
Hint: Use Poincaré’s inequality to show the coercivity of a(w, v) on V̂ .

12 Let V be a Hilbert space, a(·, ·) : V × V → R a symmetric bilinear form satisfying
a(v, v) ≥ 0 for all v ∈ V , and F ∈ V ∗ with V0 ⊂ V . Show directly that the
variational formulation

find u ∈ Vg : a(u, v) = 〈F, v〉 ∀v ∈ V0

with Vg = g + V0 is equivalent to the minimization problem

J(u) = inf
v∈Vg

J(v) with J(v) =
1

2
a(v, v)− 〈F, v〉 .

Hint: Modify the corresponding proof from your lecture notes, where the special
case a(u, v) = (u, v)V with V0 = Vg = V is treated.

Programming
Let Ω = (0, 1), ΓD = {0}, and ΓR = {1}. Consider the following one-dimensional
boundary value problem: Find u(x) such that

−u′′(x) = f(x) for x ∈ Ω ,

u(x) = gD(x) for x ∈ ΓD ,

u′(x) = α(x)
(
gR(x)− u(x)

)
for x ∈ ΓR .

(3.1)

We discretize this problem using the FEM with Courant elements. Consider the nodes
0 = x0 < x1 < · · · < xnh

= 1 which define a mesh (subdivision) Th of Ω with the elements
Tk = (xk−1, xk), k = 1, . . . , nh. We introduce the finite element space

V h := {vh ∈ C(Ω) : vh|T ∈ P1 for all T ∈ Th}

whose basis is given by the nodal basis functions ϕi, i = 0, . . . , nh, defined by

ϕi(xj) = δij for i, j = 0, . . . , nh .

4



13 Write a function ElementStiffnessMatrix(↓xa, ↓xb, ↑element matrix) which
for given nodes xa = xk−1 and xb = xk returns the element stiffness matrix

element matrix = K
(k)
h on the element Tk, defined by

K
(k)
h =


∫

Tk

(
ϕ′k−1(x)

)2
dx

∫
Tk

ϕ′k−1(x)ϕ′k(x) dx∫
Tk

ϕ′k(x)ϕ′k−1(x) dx

∫
Tk

(
ϕ′k(x)

)2
dx

 for k = 1, . . . , nh .

Hint: You can use the type typedef double Mat22[2][2]; to represent a
two-by-two matrix.

14 Write a function ElementLoadVector(↓(*f)(x), ↓xa, ↓xb, ↑element vector)

which for a given function f = f ∈ C[0, 1] and the nodes xa = xk−1 and

xb = xk returns the 2-dimensional element load vector element vector = f
(k)
h

on the element Tk, defined by

f
(k)
h =


∫

Tk

f(x)ϕk−1(x) dx∫
Tk

f(x)ϕk(x) dx

 for k = 1, . . . , nh .

Use the trapezoidal rule to approximate above integrals:∫ b

a

g(x) dx ' b− a
2

[
g(a) + g(b)

]
.

Hint: You can use the following types and function header:

typedef double (*RealFunction)(double x);
typedef double Vec2[2];
void ElementLoadVector (RealFunction f, double xa, double xb, Vec2& element_vector);

15 Define an efficient data type Matrix for the stiffness matrix Kh exploiting the fact
that it is tridiagonal. Make sure that your data type allows access to the matrix
entries.

Provide your solution on a USB stick or send it by e-mail before Monday 9.45 a.m.

5


