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04 Consider the Dirichlet boundary value problem

−
(
a(x)u′(x)

)′
= 1 ∀x ∈ (0, 1) ,

u(0) = 0 , a(1)u′(1) = 0 ,
(2.3)

where a(x) =
√

2x− x2. Justify that

u(x) =
√

2x− x2

is a classical solution of (2.3), i. e., u ∈ X := C2(0, 1)∩C1(0, 1]∩C[0, 1). Further-
more, show that ∫ 1

0

|u′(x)|2 dx =∞ .

Note: This example shows that u 6∈ H1(0, 1), i. e., u is no weak solution.

05 Let the coefficient a ∈ L∞(0, 1) be defined by

a(x) =

{
a1 for x ∈

[
0, 1

2

]
,

a2 for x ∈
(

1
2
, 1
]
,

with positive constants a1 6= a2. Derive a variational formulation for the boundary
value problem

−a(x)u′′(x) = f(x) ∀x ∈ (0, 1) \ {1
2
} ,

u(0) = g1 , u(1) = g2 ,

with the transmission conditions

u(1
2
−) = u(1

2
+) ,

a1 u
′(1

2
−) = a2 u

′(1
2
+) ,

where, w(1
2
−) and w(1

2
+) denote the left sided and right sided limit of a function w,

respectively. Hint: Integration by parts is only valid on the sub-intervals, separately.

06 Derive the variational formulation

find u ∈ Vg : a(u, v) = 〈f, v〉 ∀v ∈ V0 (2.4)

of the pure Neumann boundary value problem

−u′′(x) = f(x) for x ∈ (0, 1) ,

u′(0) = g0 ,

−u′(1) = g1 ,

and show the following statements:

(a) If (2.4) has a solution, then

〈f, c〉 = 0, ∀c ∈ R . (2.5)
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(b) If u is a solution of (2.4), then, for any constant c ∈ R, û := u + c is also a
solution.

(c) If we choose c = −
∫ 1

0
u(x) dx, then

û ∈ V̂ =
{
v ∈ H1(0, 1) :

∫ 1

0

v(x) dx = 0
}

(d) If û ∈ V̂ solves the variational problem

a(û, v̂) = 〈f, v̂〉 ∀v ∈ V̂ ,
and if the condition (2.5) holds, then û solves also (2.4).
Hint: Each test function v ∈ H1(0, 1) can be written as v(x) = v̂(x) + v with

v =
∫ 1

0
v(x) dx and v̂ ∈ V̂ .

In the lecture, the coercivity of the bilinear form

a(w, v) =

∫ 1

0

[
a(x)w′(x) v′(x) + b(x)w′(x) v′(x) + c(x)w(x) v(x)

]
dx , (2.6)

on the space V0 = {v ∈ H1(0, 1) : v(0) = 0} has been shown for the special case a(x) = 1,
b(x) = 0, c(x) = 0. In the following three exercises, we consider more general cases with
a, b, c ∈ L∞(0, 1). Throughout, you will have to use the estimate

a(v, v) ≥ a0 |v|2H1(0, 1) +

∫ 1

0

b(x) v′(x) v(x) dx+ c0 ‖v‖2L2(0, 1) (2.7)

(which is rather easily shown), where a0 = inf
x∈(0, 1)

a(x) and c0 = inf
x∈(0, 1)

c(x).

07 Show the coercivity of a(w, v) on V0 = {v ∈ H1(0, 1) : v(0) = 0} under the
assumptions

a0 > 0 , CF ‖b‖L∞(0, 1) < a0 , c0 ≥ 0 ,

where CF is the constant in Friedrichs’ inequality.
Hint: Use Cauchy’s inequality to show the estimate∫ 1

0

b(x) v′(x) v(x) dx ≥ −‖b‖L∞(0, 1) |v|H1(0, 1) ‖v‖L2(0, 1)

and use it to bound the second term on the right hand side of (2.7).

08 Show the coerivity of a(w, v) on the whole space H1(0, 1) under the assumptions

a0 > 0 , ‖b‖L∞(0, 1) < 2
√
a0 c0 , c0 > 0 .

Hint: Using the estimates above you should be able to obtain

a(v, v) ≥ q
(
‖v‖L2(0, 1), |v|H1(0, 1)

)
,

with q(ξ0, ξ1) = a0 ξ
2
1−‖b‖L∞(0, 1) ξ1 ξ0 +c0 ξ

2
0 . Show and use that q(ξ0, ξ1) ≥ a0C ξ

2
1

and q(ξ0, ξ1) ≥ c0C ξ
2
0 with C = 1− ‖b‖2L∞(0, 1)/(4 a0 c0).

09 Show the coercivity of a(w, v) on the space V0 = {v ∈ H1(0, 1) : v(0) = 0 under
the assumptions

a0 > 0 , b(x) = b ≥ 0 , c0 ≥ 0 ,

where b is a constant.
Hint: Show and use that

b

∫ 1

0

v′(x) v(x) dx =
b

2
v(x)2

∣∣∣1
0
≥ 0 ∀v ∈ V0 .
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