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Chapter 1

Introduction

The boundary element method (BEM) is an approach to solve partial dif-
ferential equations (PDEs) by appropriately discretized boundary integral
equations (BIEs). These integral equations act only on the boundary of the
computational domain and are derived using a fundamental solution accord-
ing to the differential operator under consideration. The solution of the BIE
is used to reconstruct the solution of the original PDE in the whole domain.
In this introduction we briefly sketch this approach in two examples and we
give an overview on the whole lecture.

In the following we consider a simple well-known model problem. Let
Ω ⊂ Rd (d = 2 or 3) be a domain with “smooth” boundary Γ (we will discuss
smoothness later on). Find u : Ω→ R such that

−∆u = 0 in Ω ,

u = gD on Γ .
(1.1)

This is the pure Dirichlet problem for Laplace’s equation.

The fundamental solution to the Laplace operator −∆ is given by

U∗(x, y) =

{
− 1

2π
log |x− y| for d = 2 ,

1
4π

1
|x−y| for d = 3 .

As a characteristic property of this fundamental solutions we have that

−∆xU
∗(x, y) = δy(x)

in the distributional sense, where δy denotes Dirac’s delta distribution. We
also have that

−∆xU
∗(x, y) = 0 ∀y 6= x

in a strong sense (note that U∗(x, y) is C∞ unless x = y).

1



CHAPTER 1. INTRODUCTION 2

Example 1.1 (indirect approach) We make the ansatz that the solution
u of (1.1) fulfills

u(x) =

∫
Γ

U∗(x, y)w(y) dsy for x ∈ Ω , (1.2)

for some (yet unknown) density w : Γ → R. Then u satisfies indeed the
homogeneous Laplace equation. Proof:

−∆u(x) = −∆x

∫
Γ

U∗(x, y)w(y) dsx =

∫
Γ

−∆xU
∗(x, y)︸ ︷︷ ︸

=0

w(y) dsy = 0 .

Here we could swap integration and differentiation because x 6= y. We now
define the boundary integral operator

(V w)(x) :=

∫
Γ

U∗(x, y)w(y) dsy for x ∈ Γ .

In order to fulfill our Dirichlet boundary conditions, the density w : Γ → R
has to satisfy

V w = gD on Γ . (1.3)

This is a boundary integral equation (BIE) of the first kind. Once we have
solved this equation, i. e., we have w, formula (1.2) defines the solution u of
(1.1).

Example 1.2 (direct approach) Green’s second formula reads∫
Ω

−u∆v + v∆u dx =

∫
Γ

−u ∂v
∂n

+ v
∂u

∂n
dsx .

Setting v(x) := U∗(x, y) with y ∈ Ω we obtain∫
Ω

−∆xU
∗(x, y)︸ ︷︷ ︸

=δy(x)

u(x) dx+

∫
Ω

U∗(x, y) ∆u(x) dx

= −
∫

Γ

u(x)
∂

∂nx

U∗(x, y) dsx +

∫
Γ

U∗(x, y)
∂u

∂n
(x) dsx

Without worrying about correctness, we interpret the first integral as an
evaluation of Dirac’s delta distribution and obtain

u(y) =

∫
Ω

U∗(x, y)
[
−∆u(x)

]︸ ︷︷ ︸
=0

dx−
∫

Γ

[ ∂

∂nx

U∗(x, y)
]
u(x)︸︷︷︸
=γ0u

dsx

+

∫
Γ

U∗(x, y)
∂u

∂n
(x)︸ ︷︷ ︸

=γ1u

dsx ∀y ∈ Ω .
(1.4)
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This identity is called Green’s third formula or representation formula. It
represents the value of u in the interior of Ω in terms of the so-called Cauchy
data (

γ0u
γ1u

)
=

(
u
∂u
∂n

)
on Γ ,

i. e., the trace of u and the normal derivative. By making a careful (non-
trivial) transition y → Γ, one obtains an equation of the form

u(y)︸︷︷︸
=gD(y)

= −(K̃ u︸︷︷︸
=gD

)(y) +
(
V
∂u

∂n

)
(y) ∀y ∈ Γ , (1.5)

where K̃ can be represented by an integral operator (more details are given
in subsequent chapters), and V is the operator from before. We see that in
case of our pure Dirichlet problem, the unknown normal derivative ∂u/∂n
can be determined directly via the above BIE that is similar to (1.3).

Other approaches

• The ansatz

u(x) =

∫
Γ

∂

∂nx

U∗(x, y) v(y) dsy for x ∈ Ω ,

for some density v : Γ→ R also fulfills −∆u = 0, and it leads to a BIE
of the second kind.

• Formula (1.5) was something like “γ0(1.4)”. We can also use “γ1(1.4)”,
which also leads to a BIE of the second kind.

In this lecture we will clarify in which spaces we have to work, and if and
in which sense the integral equations are solvable. Secondly, we will discuss
numerical methods to solve the discretized equations.

Overview on numerical methods Similarly to the finite volume method
(FVM), the finite difference method (FDM), and in particular the finite ele-
ment method (FEM), we will discretize our BIE

B v = g

(having in mind equations (1.3) or (1.5)) using a mesh of the boundary Γ,
consisting of boundary elements Γj.
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• In the collocation method we make the piecewise constant ansatz

vh(x) =
n∑

j=1

vj χΓj

for our approximate solution vh, where χΓj
denotes the characteristic

function. Of course we cannot expect B vh = g on the whole boundary.
Instead we chose a set of test points {yj}j=1...n ⊂ Γ and seek for the
coefficients (vj)j=1...n to satisfy

(B vh)(yj) = g(yi) ∀i = 1 . . . n ,

which leads to a linear system of algebraic equations.

• In the more general Galerkin method, a projection method, we fix a
space V where the solution v of the BIE is sought (i. e., some function
space we did not yet specify). Then we choose a discrete subspace
Vh ⊂ V and seek an approximate solution vh ∈ Vh such that

〈B vh, wh〉 = 〈g, wh〉 ∀wh ∈ Vh .

This is a projection of the continuous equation on V to the discrete
space Vh.

Other topics of this lecture include the correct treatment of (mixed)
boundary conditions, error estimates, and pros and cons compared to the
finite element method. Obviously, a huge advantage is the reduction in di-
mension: instead of an equation on Ω ⊂ Rd, we get an equation on Γ ⊂ Rd−1.
It will turn out that BEM system matrices are dense, but that they can be
approximated by data-sparse matrices and/or that their application to a vec-
tor can be done in quasi-linear time. These techniques which we will briefly
touch are covered by the keyword fast BEM.

Among typical applications of BEM are exterior field problems, screen,
and crack problems. We do not cover these problems, but only give some
hints how exterior field problems can be treated.



Chapter 2

PDEs, Fundamental solutions,
Green’s formulae, and a first
boundary integral equation

2.1 Notations and definitions

In the following let Ω ⊂ Rd (with d = 2 or 3) be a domain (open and
connected) with boundary Γ = ∂Ω. Very often, Ω will be bounded too.
Nevertheless, we will also work with unbounded domains, e. g., with the
complement of a bounded domain. If Ω is bounded, we will implicitly assume
that it is also simply connected (i. e., any closed curve in Ω can be contracted
to a point, where the whole process of contraction occurs in Ω) and that its
boundary has only one connected component. However, this restriction is not
essential. More important is the restriction to the class of Lipschitz domains
that will be defined in the sequel.

Definition 2.1. (a) The set

Ω̃ := {x ∈ Rd : xd < γ(x̃) for x̃ = (x1, . . . , xd−1) ∈ Rd−1}

is called a Lipschitz hypograph if γ : Rd−1 → R is Lipschitz continuous,
i. e., there exists a constant M > 0 such that

|γ(x̃)− γ(ỹ)| ≤ M |x̃− ỹ| ∀x̃, ỹ ∈ Rd−1 .

Note that Γ̃ := ∂Ω̃ = {x ∈ Rd : xd = γ(x̃) for some x̃ ∈ Rd−1}.

(b) The open set Ω ⊂ Rd is a Lipschitz domain if its boundary Γ is compact
and there exist finite families {Wj} and {Ωj} such that

5
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Wj

jΩ

Ω

Figure 2.1: Sketch of Definition 2.1.

Figure 2.2: Examples of non-Lipschitz domains.

(i) {Wi} is a finite open cover of Γ, i. e., Wj ⊂ Rd are open sets and
Γ ⊂

⋃
j Wj,

(ii) each Ωj can be transformed to a Lipschitz hypograph by a rigid
motion (a rotation plus a translation),

(iii) Wj ∩ Ω = Wj ∩ Ωj for all j.

(c) If the parameterizations γj of each hypograph Ωj in the above definition
satisfy γj ∈ Ck(Rd−1) we simply write Γ ∈ Ck. If γj ∈ Ck,1(Rd−1) (the
k-th derivative Lipschitz) we write Γ ∈ Ck,1. With this notation, the
boundary Γ of a Lipschitz domain fulfills Γ ∈ C0,1. If these conditions
hold only piecewise (on a finite non-overlapping partition of Γ =

⋃
Γk)

we write Γ ∈ Ck
pw or Γ ∈ Ck,1

pw .

Many polygons and polyhedra are Lipschitz domains. Some counterex-
amples are shown in Figure 2.1: in the leftmost domain, the graph fails to be
Lipschitz, in the second domain, the boundary fails to be on one side, and in
the last domain, the boundary fails to be a graph at all.

Note that Ω is Lipschitz if and only if Rd \ Ω is Lipschitz.

Lemma 2.2. Let Ω be a Lipschitz domain. Then it has a surface measure
(denoted s) and an outward unit normal vector (denoted n) s-almost every-
where on Γ.
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Proof. The proof follows from Rademacher’s theorem.

Notation. We introduce the following differential operators,

• the gradient ∇u :=


∂u
∂x1
...

∂u
∂xd

 of a scalar field u : Ω→ R,

• the divergence divF :=
∑d

i=1
∂Fi

∂xi
of a vector field F : Ω→ Rd,

• the normal derivative ∂u
∂n

:= ∇u · n,

• the Laplace operator ∆u := div∇u =
∑d

i=1
∂2u
∂x2

i
,

• the Helmholtz operator −∆u− κ2u for some κ ∈ R,

• the Lamé operator of linearized elasticity −µ∆u− (λ+ µ)∇divu.

In order to indicate the differentiation variable we write ∇x, ∆y, etc.

Theorem 2.3 (Gauss). Let Ω be a bounded Lipschitz domain and let the
vector field F : Ω→ Rd be differentiable. Then∫

Ω

divF dx =

∫
Γ

F · n ds .

In this lecture we will mainly work in the world of Laplace and Poisson.
Our standard problem is to find u : Ω→ R such that

−∆u = f in Ω ,

u = gD on ΓD ,

∂u

∂n
= gN on ΓN ,

(2.1)

where the Dirichlet boundary ΓD is a part of Γ, and the Neumann boundary
ΓN = Γ \ ΓD. If ΓN = Γ, we have the compatibility (solvability) condition∫

Ω

f dx+

∫
Γ

gN ds = 0 . (2.2)
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2.2 Fundamental solutions

Definition 2.4. Let C∞
0 (Ω) := {ϕ ∈ C∞(Ω) : suppϕ ⊂⊂ Ω}, i. e., the

infinitely many times differentiable functions with compact support in Ω.
Let {ϕn} be a sequence in C∞

0 (Ω). We write

ϕn → 0 sequentially

if and only if for all K ⊂⊂ Ω and for all multi-indices α,

∂αϕn → 0 uniformly on K .

We denote by D(Ω) the space C∞
0 (Ω) equipped with this convergence. This

is no metric space, but we can define continuity via the above sequential
convergence. We set

D′(Ω) := {` : D(Ω)→ R : ` linear and continuous} ,

and denote the evaluation of such linear forms by 〈`, ϕ〉 := `(ϕ). The con-
tinuity says that ϕn → 0 sequentially implies 〈`, ϕn〉 → 0. D′(Ω) is called
space of Schwartz distributions on Ω.

Example 2.5. • Each function u ∈ L1
loc(Ω) (i. e., |u| is integrable on

each compact subset of Ω) defines a distribution u ∈ D′(Ω) by

〈u, ϕ〉 :=

∫
Ω

uϕ dx for ϕ ∈ D(Ω) .

In the following we identify u and u. If a distribution ` ∈ D′(Ω) has a
representation by an L1

loc(Ω) function, it is called regular distribution.

• The Dirac delta-distribution for a point y ∈ Ω is defined by

δy ∈ D′(Ω) : 〈δy, ϕ〉 := ϕ(y) for ϕ ∈ D(Ω) .

This distribution is not regular, it cannot be represented by a function.

Definition 2.6. Let L be a scalar elliptic differential operator. Then U∗(·, ·) :
Ω× Ω→ R is called fundamental solution if

LxU
∗(x, y) = δy

(in the distributional sense).

Fundamental solutions do not necessarily exist for any differential oper-
ator. Even if they do, they might be difficult to construct. In the following
we discuss a few well-known operators.
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Example 2.7. 1. Laplace operator: L = −∆:

U∗(x, y) =


1
2
(1− |x− y|) for d = 1 ,
− 1

2π
log |x− y| for d = 2 ,

1
4π

1
|x−y| for d = 3 .

2. Helmholtz operator: L = −∆− κ2I and d = 3:

U∗(x, y) =
eiκ|x−y|

4π|x− y|
=

1

4π|x− y|
[
cos(κ|x− y|) + i sin(κ|x− y|)

]
.

3. Further operators: For the Lamé operator and the Stokes system see,
e. g., [Steinbach]. For Lu = −div(A∇u) + 2 b · ∇u + c u see, e. g.,
[Sauter/Schwab]. Very general elliptic systems are treated in [McLean].

Lemma 2.8. Let L be strongly elliptic with constant coefficients. Then
U∗(x, y) is C∞ in Rd × Rd \ {(x, x) : x ∈ Rd}. We have

LxU
∗(x, y) = 0 ∀x 6= y

(in the strong sense).

Remark 2.9. For d = 2 we can use

U∗
r (x, y) =

1

2π
log

r

|x− y|

as fundamental solution, for all r > 0.

In the following we restrict ourselves to L = −∆.

2.3 Green’s formulae

Lemma 2.10. Let Ω ⊂ Rd be a bounded Lipschitz domain. Then Green’s
first formula,∫

Ω

u∆v dx = −
∫

Ω

∇u · ∇v dx+

∫
Γ

u
∂v

∂n
ds ∀u ∈ C1(Ω), v ∈ C2(Ω)

and Green’s second formula,∫
Ω

u∆v − v∆u dx =

∫
Γ

u
∂v

∂n
− v ∂u

∂n
ds ∀u, v ∈ C2(Ω)

hold.
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Note that we can relax C1(Ω) and C2(Ω) a bit such that all involved
quantities are well defined. Using density arguments we can replace Ck

above by Hk; we will treat this in detail in Chapter 4.
We now set v(x) := U∗(x, y), do not worry about non-smoothness and

obtain Green’s third formula (also called representation formula),

u(y) = −
∫

Ω

U∗(x, y)∆xu(x) dx−
∫

Γ

∂

∂nx

U∗(x, y)u(x) dsx +

+

∫
Γ

U∗(x, y)
∂u

∂n
(x) dsx ∀y ∈ Ω .

(2.3)

A sketch of a proof is found in the introduction. We will provide a careful
proof in Chapter 4.

Remark 2.11. 1. In Green’s first formula above, we can assume that u ∈
H1(Ω) and v ∈ H2(Ω), such that the traces γ0 := u|Γ and γ1 = ∇v · n
are well-defined. If v ∈ H1(Ω) with ∆v ∈ L2(Ω), one can show that
∂v
∂n

remains well-defined and a further generalization is possible, see
Chapter 4.

2. The proof of (2.3) cannot be performed like∫
Ω

u(x)
[
−∆xU

∗(x, y)
]
dx = 〈δy, u〉 = u(y) ,

because u 6= C∞
0 (Ω) (u has not necessarily a compact support). Instead

we can use Dirac’s delta distribution on the entire space Rd, but then
we have to formally set −∆u = 0 on Rd \Ω, i. e., we loose smoothness.
We therefore need a careful treatment which will involve distributions,
and which is for now postponed to Chapter 4.

3. Formula (2.3) only holds for y ∈ Ω. In general, we have

σ(y)u(y) = −
∫

Ω

U∗(x, y) ∆xu(x) dx−
∫

Γ

∂

∂nx

U∗(x, y)u(x) dsx +

+

∫
Γ

U∗(x, y)
∂u

∂n
(x) dsx ∀y ∈ Ω ,

with

σ(y) :=


1 if y ∈ Ω ,
1
2π
θ(y) if y ∈ Γ, d = 2 ,

1
4π
θ(y) if y ∈ Γ, d = 3 ,

(2.4)
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ε

Ω

Γ

Figure 2.3: Sketch of σ from (2.4).

and

θ(y) := lim
ε→0

1

εd−1

∫
x∈Ω: |y−x|=ε

ds

For sufficiently smooth Γ (e. g., C1
pw), σ = 1

2
almost everywhere on Γ,

see Figure 2.3.

We will now derive a simple boundary integral equation for a boundary
value problem of Laplace’s equation. For the time being we do not worry
about spaces and solvability, and we assume that the representation formula
holds. We continue with a numerical method, the collocation method, in
Chapter 3. Later on, we will investigate everything more precisely.

2.4 A first boundary integral equation

Consider problem (2.1) with ΓD = Γ and f = 0, i. e., the pure Dirichlet
problem for Laplace’s equation. From the representation formula above we
obtain

σ(y)u(y) = −
∫

Γ

∂

∂nx

U∗(x, y)u(x) dsx +

∫
Γ

U∗(x, y)
∂u

∂nx

(x) dsx ∀y ∈ Ω .

We now restrict this equation to the boundary Γ and observe that then
only the known Dirichlet trace u|Γ = γ0u and the unknown Neumann trace
∂u
∂n

= γ1u appear in the equation. We define the boundary integral operators

(V w)(y) :=

∫
Γ

U∗(x, y)w(x) dsx for y ∈ Γ ,

(K v)(y) :=

∫
Γ

∂

∂nx

U∗(x, y) v(x) dsx for y ∈ Γ .
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The operator V is called single layer potential operator, andK is called double
layer potential operator. For smooth functions v and w the integrals are well-
defined as a weakly singular surface integrals. With the above equation we
get

V
∂u

∂n
= σu+K u , (2.5)

which is a weakly singular boundary integral of the first kind for the unknown
Neumann trace ∂u

∂n
.



Chapter 3

A simple collocation method

3.1 A pointwise boundary integral equation

We consider the domain Ω with boundary Γ ∈ C1 for simplicity, i. e., σ(y) = 1
2

for all y ∈ Γ. In this chapter we treat the mixed boundary value problem of
Laplace’s equation,

−∆u = 0 in Ω ,

u = gD on ΓD ,

∂u

∂n
= gN on ΓN = Γ \ ΓD .

(3.1)

Splitting the integrals in (2.5) into Dirichlet and Neumann part, and ordering
with respect to what is known and what is unknown, we obtain

Find u = u|ΓN
and t :=

∂u

∂n
|ΓD

: (3.2)∫
ΓN

∂

∂nx

U∗(x, y)u(x) dsx −
∫

ΓD

U∗(x, y) t(x) dsx = fD(y) ∀y ∈ ΓD ,

1

2
u(y) +

∫
ΓN

∂

∂nx

U∗(x, y)u(x) dsx −
∫

ΓD

U∗(x, y) t(x) dsx = fN(y) ∀y ∈ ΓN ,

with

fD(y) := −1

2
gD(y)−

∫
ΓD

∂

∂nx

U∗(x, y) gD(x) dsx +

∫
ΓN

U∗(x, y) gN(x) dsx ,

fN(y) := −
∫

ΓD

∂

∂nx

U∗(x, y) gD(x) dsx +

∫
ΓN

U∗(x, y) gN(x) dsx .

13
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Ω

x

xΓ
N

Γ
D

Γ
j

xj+1
x

j

k

xn

1

x
2

Figure 3.1: Discretization of the boundary of a two-dimensional domain.

3.2 Discretization in two dimensions

Boundary discretization

We introduce nodes x1, . . . , xn ∈ Γ with xi 6= xj for i 6= j.

Notation. xn+1 := x1

Γj := {xj + t(xj+1 − xj) ∈ R2 : 0 ≤ t < 1} (element)

hj := |xj+1 − xj| (mesh size)

Γh :=
⋃n

j=1 Γj (approximated boundary)

We assume that both parts ΓD and ΓN have only one connected compo-
nent and that we have chosen our enumeration such that

ΓhD :=
k⋃

j=1

Γj and ΓhN :=
n⋃

j=k+1

Γj

approximate ΓD and ΓN , respectively, see Figure 3.1.

Piecewise constant approximation

We approximate the Cauchy data (u, t) = (u|Γ,
∂u
∂n
|Γ) by piecewise constant

functions,

• u(x) ≈ uj for x ∈ Γj and j = 1, . . . , n,

uh(x) :=
∑n

j=1
uj χΓj

(x) for x ∈ Γh ,

• t(x) ≈ tj for x ∈ Γj and j = 1, . . . , n,

th(x) :=
∑n

j=1
tj χΓj

(x) for x ∈ Γh ,
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where χΓj
is the characteristic function on Γh that equals 1 on Γj and 0

elsewhere.
The values u1, . . . , uk (on ΓhD) and tk+1, . . . , tn (on ΓhN) are usually ap-

proximated from the known boundary data gD and gN , e. g.,

uj =
1

2

[
gD(xj) + gD(xj+1)

]
for j = 1, . . . , k (on ΓhD) ,

tj =
1

2

[
gN(xj) + gN(xj+1)

]
for j = k + 1, . . . , n (on ΓhN) .

Collocation

Our boundary integral equation (3.2) cannot be fulfilled exactly, since this
would lead to infinitely many equations for k + (n − k) = n unknowns.
Therefore, we choose a set of test points, the collocation points {yj}i=1,...,n,
e. g., chosen to be

yi =
1

2
(xi + xi+1) .

����
�����

AA

s AA

xi
xi+1

Γj

yi

Evaluating (3.2) only at {yi}i=1,...,n we obtain a system of linear equations.
With

b̃ij :=

∫
Γj

∂

∂nx

U∗(x, yi) dsx , aij :=

∫
Γj

U∗(x, yi) dsx ,

the system reads

∀i = 1, . . . , k :
n∑

j=k+1

b̃ij uj −
k∑

j=1

aij tj = −1

2
ui −

k∑
j=1

b̃ij uj +
n∑

j=k+1

aij tj ,

∀i = k + 1, . . . , n :
1

2
uj +

n∑
j=k+1

b̃ij uj −
k∑

j=1

aij tj = −
k∑

j=1

b̃ij uj +
n∑

j=k+1

aij tj .

With

bij :=
1

2
δij + b̃ij ,

where δij = 1 if i = j and else zero (Kronecker delta), the matrices

BD = (bij)
1≤i≤n
1≤j≤k

BN = (bij)
1≤i≤n
k+1≤j≤n

AD = (aij)
1≤i≤n
1≤j≤k

AN = (aij)
1≤i≤n
k+1≤j≤n
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and the vectors

uD = (uj)1≤j≤k uN = (uj)k+1≤j≤n tD = (tj)1≤j≤k tN = (tj)k+1≤j≤n

we can write the system in the compact form

[
BN

∣∣− AD

]︸ ︷︷ ︸
=:C∈Rn×n

[
uN

tD

]
=
[
−BD

∣∣AN

] [ uD

tN

]
︸ ︷︷ ︸

=:f∈Rn

.

In general, the matrix C is dense and non-symmetric.

3.3 Computation of matrix entries in two di-

mensions

1. The diagonal entry aii

aii =

∫
Γi

U∗(x, yi) dsx = − 1

2π

∫
Γi

log |x−yi| dsx = − 1

2π

∫ |xi+1−yi|

−|xi−yi|
log |η| dη

where in the last step we have used the line integral parameterization sketched
below.

�
����

�����
��*

AA

s AA

xi
xi+1

Γj

yi
η = ”x− yi”

��*���
r
ε

We treat this as a weakly singular integral, i. e.,

lim
ε→0

∫
Γi\Bε(yi)

log |x− yi| dsx

where Bε(yi) is the open unit ball with center yi and radius ε. This means,
in the parameterized integral we have to exclude the region [−ε, ε]. Recall
that hi = |xi+1 − xi| and yi = 1

2
(xi + xi+1). Thus,

|xi+1 − yi| = |xi − yi| =
hi

2
.
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The integral with [−ε, ε] being excluded equals the sum of the following two
integrals,∫ hi/2

ε

log |η|dη = η(log η − 1)
∣∣hi/2

ε
=

hi

2

(
log

hi

2
− 1
)
− ε(log ε− 1) ,∫ −ε

−hi/2

log |η|dη =
hi

2

(
log

hi

2
− 1
)
− ε(log ε− 1) .

Using de l’Hospital’s theorem, one easily finds that

lim
ε→0

ε log ε = lim
ε→0

log ε

ε−1
=

“−∞”

+∞
= lim

ε→0

ε−1

−ε−2
= lim

ε→0
−ε = 0 .

Hence,

aii = − 1

2π
hi

(
log

hi

2
− 2
)
.

2. The diagonal entry b̃ii

b̃ii =

∫
Γi

∂

∂nx

U∗(x, yi) dsx = − 1

2π

∫
Γi

∂

∂nx

log |x− yi| dsx

Using that ∂v
∂n

= ∇v · n and ∇x|x − y| = ∇x

√
(x− y) · (x− y) = (x−y)

|x−y| , we
obtain

b̃ii = − 1

2π

∫
Γi

1

|x− yi|
(x− yi)

|x− yi|
· n(x) dsx

However, one easily sees that the normal vector is always perpendicular to
the vector x− yi, therefore

b̃ii = 0 .

3. The off-diagonal entry aij, i 6= j with xj, xj+1, yi not collinear

We introduce a coordinate transformation, see Figure 3.2.

a = |z − yi|

cos θ =
|z − yi|
|x− yi|

 =⇒ |x− yi| =
a

cos θ

η = a tan θ

dsx = dη
(∗)
= a

d

dθ

(
tan θ

)
dθ =

a

cos2 θ
dθ

(∗∗)
= a (1 + tan2 θ) dθ
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y
i

x

xj+1

jx

z

a

1

θ
2

θ

θ

η

Figure 3.2: Coordinate transformation for Case 3.

aij = − 1

2π

∫
Γj

log |x− yi| dsx
(∗)
= − a

2π

∫ θ2

θ1

log
( a

cos θ

) x
d

dθ

(
tan θ︸︷︷︸
= sin θ

cos θ

)
dθ

= − a

2π

[
log
( a

cos θ

)
tan θ

]θ2

θ1

+
a

2π

∫ θ2

θ1

cos θ

a

(−a) (− sin θ)

cos2 θ

sin θ

cos θ
dθ︸ ︷︷ ︸

=
∫ θ2

θ1
tan2 θ dθ

(∗∗)
=

[
tan θ − θ

]θ2

θ1

= − a

2π

{
tan θ

[
log
( a

cos θ

)
− 1
]

+ θ
}θ2

θ1

4. The off-diagonal entry aij, i 6= j with xj, xj+1, yi collinear

For simplicity we treat only the case that yi is on the side of xj, see the figure
below, the other case is of course analogous.

xj+1

s
x xj

s
yi

�
η
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Then,

aij = − 1

2π

∫ |xj+1−yi|

|xj−yi|
log |η| dη = − 1

2π

[
η (log η − 1)

]|xj+1−yi|

|xj−yi|

5. The off-diagonal entry b̃ij, i 6= j

Using what we have already obtained in Case 2 we get

b̃ij = − 1

2π

∫
Γj

(x− yi) · n(x)

|x− yi|2
dsx .

If xj, xj+1, and yi are collinear, n(x) ⊥ (x−yi) and thus b̃ij = 0. In the other
case, we can use the coordinate transformation introduced in Case 3. There,
x − yi = (a, η)T and |x − yi| = a

cos θ
, the normal vector equals (1, 0)T , and

dsx = a
cos2 θ

dθ. Hence,

b̃ij = − 1

2π

∫ θ2

θ1

a · 1 + η · 0
a2

cos2 θ

a

cos2 θ
dθ = − 1

2π

∫ θ1

θ0

dθ = − 1

2π
(θ2 − θ1) .

Remark 3.1. 1. We see that we can compute the entries of A, B an-
alytically. However, the following numerical issues have to be taken
into account: (i) one needs stable evaluations of the formulae, and (ii)
the case distinction (e. g., the collinear test) must be done properly.
Clearly, in implementations one needs to introduce relative criteria,
taking the size of the domain/element into account.

2. In some rare situations, where the above issues cause problems, one
may switch to numerical integration.

3. The matrix B represents the operator 1
2
I +K. If we have ΓD = Γ and

u|Γ = 1, then ∂u
∂n

= 0 because the solution is constant. Let 1 denote
the constant function of value 1 on Γ. Then

(
1

2
I +K)1 = V

∂u

∂n
= 0 .

This means 1 is in the kernel of 1
2
I + K. Often this property is also

desired in the discrete setting. Let 1 := (1, . . . , 1)T ∈ Rn. Then we
would like to have

B 1 = 0
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i. e., preserve the kernel of 1
2
I +K. This can be achieved by redefining

bii := −
n∑

j=1, j 6=i

bij for i = 1, . . . , n ,

which is known as the row sum trick. The values bii are then usually
close to 1

2
.

Before we move to three-dimensional problems, we shortly summarize
what we have obtained so far, and draw a comparison with a standard finite
element method.

Summary of the collocation method

• Discretization of the boundary

• Generation of A, B, leading to the system C

[
uN

tD

]
= f

• Solve the system

• Post-processing (optional), e. g., calculate some values u(y) for y ∈ Ω
using the representation formula.

Comparison with FEM

Assume that for both the boundary and the finite element method we have
a quasi-uniform triangulation such that the mesh sizes fulfill

h ≤ hi ≤ c̃ h ∀i

with a uniform constant c̃ > 0. Then for the BEM, the number of unknowns
behaves as n = O(h−1) and for the FEM, the number of unknowns N =
O(h−2). In the following table we assume that a direct solver for the FEM
exploits the band structure of the stiffness matrix, and that we have an
optimal iterative solver, like multi-level or multi-grid.

direct iterative
2D unknowns mem ops mem ops
FEM O(h−2) O(h−3) O(h−4) O(h−2) O(h−2)
BEM O(h−1) O(h−2) O(h−3) O(h−2) ≥ O(h−2) ?

In the table “mem” indicates the storage amount and “ops” the number
of floating point operations. We see a clear advantage of BEM over FEM
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x
x

x

j1
j2

j3

Γj

Figure 3.3: Left: plane triangular boundary element, right: part of a BEM
mesh.

when using direct solvers. Since the BEM matrix C is dense, we need O(h−2)
memory cells to store it and at least the same complexity to apply it. Using
a fast BEM and approximating the matrix in some data-sparse form, the
storage and computational complexity can be lowered to O(h−1 logα(h−1)),
which then outperforms the FEM, at least asymptotically.

3.4 Three-dimensional problems

Boundary discretization in three dimensions

In the three-dimensional case we approximate the boundary Γ by a triangu-
lation

Γh =
n⋃

i=1

Γj

where each Γj is a plane, regular triangle with its vertices lying on Γ, see
Figure 3.3.

Notation. The vertices of the triangles (the nodes of the triangulation) are
denoted by xi. The three nodes of a fixed triangle (element) Γj are denoted
by xj1, xj2, and xj3. For each triangle Γj we define the mesh size hi := |Γj|1/2.

Again we assume that the elements approximate the Dirichlet and Neu-
mann part separately, and that we have an enumeration of the elements such
that

ΓhD =
k⋃

j=1

Γj and ΓhN =
n⋃

j=k+1

Γj .
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Piecewise constant approximation

Again, our variables are (u, t) = (u|Γ,
∂u
∂n

). We choose the approximations

uh(x) =
n∑

j=1

uj χΓj
(x) for x ∈ Γh a.e.,

th(x) =
n∑

j=1

tj χΓj
(x) for x ∈ Γh a.e.

The values u1, . . . , uk (on ΓhD) and tk+1, . . . , tn (on ΓhN) are usually con-
structed from the known boundary data gD, gN , e. g.,

uj =
1

3

[
gD(xj1) + gD(xj2) + gD(xj3)

]
for j = 1, . . . , k ,

tj =
1

3

[
gN(xj1) + gN(xj2) + gN(xj3)

]
for j = k + 1, . . . , n .

Collocation

We choose n collocation points {yi}ni=1, e. g., the center of gravity of each
element,

yi :=
1

3

(
xi1 + xi2 + xi3

)
.

Evaluating (3.2) at these collocation points we obtain the linear system

1

2
ui +

n∑
j=1

uj

∫
Γj

∂

∂nx

U∗(x, y) dsx︸ ︷︷ ︸
=:ebij

−
n∑

j=1

tj

∫
Γj

U∗(x, y) dsx︸ ︷︷ ︸
=:aij

= 0 .

In short, with bij = 1
2
δij + b̃ij, this can be written as B u−A t = 0. Splitting

the matrices and vectors as before we get

[
BN

∣∣− AD

]︸ ︷︷ ︸
=:C

[
uN

tD

]
=
[
−BD

∣∣AN

] [ uD

tN

]
︸ ︷︷ ︸

=:f

Computation of the matrix entries aij, b̃ij

The integrals

aij =
1

4π

∫
Γj

1

|x− yi|
dsx
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and

b̃ij =
1

4π

∫
Γj

∂

∂nn

1

|x− yi|
dsx = − 1

4π

∫
Γj

(x− yi) · n(x)

|x− yi|3
dsx

can be computed analytically and several cases have to be taken into ac-
count. As in two dimensions, numerical integration is sometimes chosen as
an alternative. Also, b̃ii = 0 (because yi ∈ Γi) but one can use the row sum
trick to preserve the kernel of 1

2
I +K.

Comparison with FEM

We assume shape-regular, quasi-uniform triangulations of Ω and Γ. This
means in particular for the boundary element mesh that h ≤ hj ≤ C̃ h and
that the radius of the largest inscribed circle of each boundary element is
comparable to hj, i. e., the triangles do not degenerate. Then n = O(h−2).
For the finite element method the number of unknowns behaves then as
O(h−3). Since the BEM system matrix C is dense, we need O(h−4) memory
cells to store it. Assuming again that a direct solver for FEM exploits the
band structure of the stiffness matrix, and that we have an optimal iterative
FEM solver (multi-level or multi-grid), the comparison reads as follows.

direct iterative
3D unknowns mem ops mem ops
FEM O(h−3) O(h−5) O(h−7) O(h−3) O(h−3)
BEM O(h−2) O(h−4) O(h−6) O(h−4) ≥ O(h−4) ?

As in two dimensions, direct solvers for BEM have a better complexity
than those for the FEM, however, it is not really satisfactory. Using dense
BEM matrices, no iterative method can outperform optimal iterative meth-
ods for FEM, because the storage amount is already larger than for FEM.
Using fast BEM and good preconditioners, both the storage and computa-
tional complexity can be lowered to O(h−2 logα h−2).



Chapter 4

Boundary integral operators

In this chapter we first introduce Sobolev spaces on the computational do-
main and its boundary and briefly give some important results on these. Then
we derive and prove a representation formula for functions in the Sobolev
space H1 that satisfy a Poisson equation in weak sense. As briefly outlined
in Remark 2.11, we will do this on the whole space Rd and allow the function
to be discontinuous across the boundary (and only there). This technique
is summarized under the keyword transmission property. The discontinuity
will require the use of some distributional spaces that we will also introduce
in the following first section. The representation formula that we derive can
be expressed in terms of so-called volume and surface potentials which in-
volve the fundamental solution. Taking traces of these potentials we obtain
boundary integral operators and two boundary integral equations which re-
late the Cauchy data, i. e., the trace and the normal derivative. Finally, we
show some properties of the boundary integral operators.

4.1 Sobolev spaces and distributions

In this section we try to be self-contained at the risk of repeating earlier
lectures. The proofs of the following results are omitted. Most of them can
be found in standard textbooks, and for all of them proofs or references to
proofs are found in [Steinbach].

Recall that Ω is always assumed to be a Lipschitz domain. As stated
before, Ω can therefore be the (bounded) interior of its boundary, or its
(unbounded) exterior. For the following Sobolev spaces defined on Ω, we can
also replace Ω by Rd.

Definition 4.1. (i) We define
L1

loc(Ω) := {u : Ω→ R : |u| is integrable over every compact set in Ω}.

24
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Given u ∈ L1
loc(Ω), a function v ∈ L1

loc(Ω) is called weak derivative of
u with respect to xi if∫

Ω

v ϕ dx = −
∫

Ω

u
∂ϕ

∂xi

dx ∀ϕ ∈ C∞
0 (Ω) .

We write v = ∂u
∂xi

. Higher derivatives are defined recursively.

(ii) For k ∈ N0 we define

Hk(Ω) :=
{
u ∈ L2(Ω) : ∀α, |α| ≤ k : ∂αu ∈ L2(Ω)

}
,

equipped with the norm

‖u‖Hk(Ω) :=
( ∑
|α|≤k

‖∂αu‖2L2(Ω)

)1/2

.

(iii) For s ∈ R let bsc denote the largest integer smaller than s. For s =
bsc+ σ ∈ R+ with σ ∈ (0, 1) we define

Hs(Ω) :=
{
u ∈ Hbsc(Ω) : ‖u‖Hs(Ω) <∞

}
,

equipped with the norm

‖u‖Hs(Ω) :=
(
‖u‖2Hbsc(Ω) +

∑
|α|≤bsc

∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)|2

|x− y|d+2σ
dx dy

)1/2

.

(iv) For s ∈ R+
0 we define

Hs
0(Ω) := C∞

0 (Ω)
‖·‖Hs(Ω)

and H−s(Ω) :=
[
Hs

0(Ω)
]∗
,

i. e., Hs
0(Ω) is the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖Hs(Ω),
and H−s(Ω) is the dual space of Hs

0(Ω), equipped with the usual dual
norm. We will sometimes also use Hs(Ω)∗, the dual of Hs(Ω). Then,
Hs(Ω)∗ ⊂ H−s(Ω) for s ≥ 0.

It can be shown that all of these spaces own an inner product and that
they are complete, i. e., they are Hilbert spaces. One can also show that
provided Ω is compact then C∞(Ω) is dense in Hs(Ω) for all s ≥ 0. Note
that sometimes in the literature, the spaces Hs(Ω) are defined via the Fourier
transform. For Lipschitz domains, however, the definition can be shown to
be equivalent to the one above.
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Remark 4.2. 1. Recall if Ω is Lipschitz then Γ = ∂Ω has a surface mea-
sure (s). Therefore,

L2(Γ) :=
{
u : Γ→ R :

∫
Γ

|u|2 ds <∞
}

is well-defined. With the inner product (u, v)L2(Γ) :=
∫

Γ
u v ds it can

be shown to be a Hilbert space.

2. As an alternative definition, we can also parameterize Γ using J suf-
ficiently smooth and bijective functions χi : τi → Γi with a smooth
parameter domain τi ⊂ Rd−1, such that Γ =

⋃J
i=1 Γi. Then we can

define
L2

χi
(Γi) :=

{
u : Γi → R : ũ := u ◦ χi ∈ L2(τi)

}
,

equipped with the norm ‖u‖L2
χi

:= ‖ũ‖L2(τi). Using suitable partition
of unity functions this can be used to give an alternative definition of
L2(Γ) which can be shown to be equivalent to the one above. The
concept of parameterization and partition of unity would be suitable
to define Hs(Γ) for s ≥ 0. However, we will mainly work in H1/2(Γ)
and use the alternative definition below.

Definition 4.3. (i) For σ ∈ (0, 1) we define

Hσ(Γ) :=
{
u ∈ L2(Γ) : ‖u‖Hσ(Γ) <∞

}
with the Sobolev-Slobodeckij norm

‖u‖Hσ(Γ) :=
(
‖u‖2L2(Γ) +

∫
Γ

∫
Γ

|u(x)− u(y)|2

|x− y|d−1+2σ
dsx dsy

)1/2

.

(ii) Note that C∞
0 (Γ)

‖·‖Hσ(Γ)
= Hσ(Γ) since Γ is a closed manifold. We

define
H−σ(Γ) :=

[
Hσ(Γ)

]∗
.

Remark 4.4. 1. For the definition of higher order Sobolev spaces on Γ,
we can either use parameterization and partition of unity (see the re-
mark before) or tangential derivatives. These definitions are in general
not equivalent, unless the boundary is sufficiently smooth, Γ ∈ Cbsc,1.

2. For an open sub-manifold Γ̃ ⊂ Γ, the space L2(Γ̃) is well-defined and

we can also define Hσ(Γ̃) for σ ∈ (0, 1) analogous to Definition 4.3.

Then, C∞
0 (Γ̃)

‖·‖
Hσ(eΓ)

= Hσ(Γ̃) if σ ∈ [0, 1
2
], otherwise the spaces differ

from each other.
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Theorem 4.5 (Trace theorem). The trace operator

γ0 : C∞(Ω)→ C∞(Γ) : u 7→ u|Γ

has a unique extension to a continuous linear operator

γ0 : H1(Ω)→ H1/2(Γ) ,

i. e., there exists a constant cT > 0 such that

‖γ0u‖H1/2(Γ) ≤ cT ‖u‖H1(Ω) ∀u ∈ H1(Ω) .

Furthermore, there exists a continuous linear operator

E : H1/2(Γ)→ H1(Ω) with γ0Ew = w ∀w ∈ H1/2(Γ) ,

i. e., there exists a constant cIT > 0 such that

‖Ew‖H1(Ω) ≤ cIT ‖w‖H1/2(Γ) ∀w ∈ H1/2(Γ) .

The operator E is often called extension operator and is obviously a right
inverse of γ0.

Remark 4.6. The above lemma basically states that H1/2(Γ) is the trace
space of H1(Ω). For higher order Sobolev spaces we have the following result.
If Γ ∈ Ck−1,1 then

γ0 : Hs(Ω)→ Hs−1/2(Γ) ∀s ∈ (1
2
, k] .

If Γ is the boundary of a Lipschitz domain the same holds even for s ∈ (1
2
, 3

2
).

The next lemma characterizes H1
0 (Ω) to consist of the H1-functions with

vanishing trace (which is a-priori not clear).

Lemma 4.7. (i) H1
0 (Ω) =

{
u ∈ H1(Ω) : γ0u = 0

}
.

(ii) The norm
|||u|||H1/2(Γ) := inf

ũ ∈ H1(Ω)
γ0ũ = u

‖ũ‖H1(Ω)

is well-defined and equivalent to ‖ · ‖H1/2(Γ).

The second part of the above lemma states that the norm of the minimal
extension is equivalent to the H1/2 norm. Indeed the minimum is attained.
The operator E in the trace theorem does not necessarily give this minimum.
For convenience, if it is clear from the context, we may sometimes write u|Γ
or even u instead of γ0u.

Finally, we introduce some distributional spaces. In the following defini-
tions the domain Ω can be replaced by its complement Rd \ Ω or by Rd.
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Definition 4.8. (i) Recall that D(Ω) is the space C∞
0 (Ω) equipped with

the sequential convergence, where

ϕn → 0 sequentially ⇐⇒ ∀K ⊂⊂ Ω ∀α : ∂αϕn → 0 uniformly in K .

D′(Ω) is the dual of D(Ω), where the definition of the continuity (which
is necessary for defining the dual space) is not based on a norm but on
the sequential convergence only.

(ii) We define E(Ω) to be the space C∞(Ω) equipped with the sequential
convergence (defined exactly as above).

(iii) We define the Schwartz space of rapidly decreasing functions

S(Rd) :=
{
ϕ ∈ C∞(Ω) : sup

x∈Rd

|xα (∂βϕ)(x)| <∞ ∀ multi-indices α, β
}
.

Above, for a multi-index α = (α1, . . . , αd) we have used the notation
xα = xα1

1 xα2
2 · · ·x

αd
d . Functions in the above Schwartz space and their

derivatives decrease faster than any polynomial. We equip S(Rd) with
the following sequential convergence,

ϕn → 0 sequentially ⇐⇒ ∀α, β : xα(∂βϕn)→ 0 uniformly in Rd .

With this convergence, we can define the dual S ′(Rd), which is called
the space of temperate distributions.

Example 4.9. Whereas it is easy to imagine functions in D(Ω) and functions
which lie only in E(Ω) (not having compact support), it is not a-priori clear
if there exist functions that lie in S(Rd) but not in D(Rd). However,

ϕ(x) := e−|x|
2

=⇒ ϕ ∈ S(Rd) .

Lemma 4.10. The following statements hold.
D(Rd) ⊂ S(Rd) ⊂ E(Rd)
E ′(Rd) ⊂ S ′(Rd) ⊂ D′(Rd)
S(Rd) ⊂ Hs(Rd) ∀s ≥ 0

Note, that any derivative of a distribution is again a distribution. Assume
that u ∈ D′(Ω), then we can define ∂u

∂xi
by

〈 ∂u
∂xi

, ϕ〉 := −〈u, ∂ϕ
∂xi

〉 for ϕ ∈ D(Ω) .

If u is a regular distribution, the distributional derivative coincides with the
weak derivative. This concept works similarly for E ′(Ω) and S ′(Rd).
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4.2 Green’s identities revisited

In this section we first derive Green’s first identity for H2(Ω). Then we
introduce a generalization of the normal derivative, which allows us to have
Green’s first identity in the larger space H1(Ω).

First, recall that for a function u ∈ H2(Ω), its normal derivative is well-
defined in the sense that

∂u

∂n
= (γ0∇u)︸ ︷︷ ︸

∈H1/2(Γ)d

·n .

Depending on the smoothness of the boundary this function is piecewise
smooth. In any case we can integrate it because due to Cauchy-Schwarz,∫

Γ

∂u

∂n
ds ≤

∫
Γ

|(γ0∇u)| |n|︸︷︷︸
=1

ds < ∞ .

Lemma 4.11. For u ∈ H2(Ω) and v ∈ H1(Ω) we have Green’s first formula,∫
Ω

∇u · ∇v dx =

∫
Ω

(−∆u) v dx+

∫
Γ

∂u

∂n
v ds .

Proof. With the same arguments as above the boundary integral in the as-
sertion of the lemma is well-defined. First, we note that the formula holds
for u, v ∈ C∞(Ω). Secondly, all expressions are well-defined and continuous
with respect to ‖u‖H2(Ω) and ‖v‖H1(Ω). For instance,

∫
Ω
∇u · ∇v dx is linear

and continuous in both u and v, as∫
Ω

∇u · ∇v dx ≤ ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) ≤ ‖u‖H2(Ω) ‖v‖H1(Ω)

implies that if u or v converges to zero, also the expression converges to zero.
Finally, since C∞(Ω) is dense in Hs(Ω) the closuring principle implies the
identity: u and v can be approximated by sequences un, vn ∈ C∞(Ω) and
the identity holds as well for the limit.

It can be shown that for u ∈ H2(Ω), ∂u
∂n
∈ H−1/2(Γ). The next lemma

states that we can generalize the definition of the normal derivative to less
regular functions such that Green’s first identity still holds.

Lemma 4.12. Suppose that u ∈ H1(Ω) and ∆u ∈ L2(Ω). Then there exists
a unique linear and continuous form g ∈ H−1/2(Γ) such that∫

Ω

∇u · ∇v dx =

∫
Ω

(−∆u) v dx+ 〈g, γ0v〉 ∀v ∈ H1(Ω) .
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Moreover
‖g‖H−1/2(Γ) ≤ cIT

{
|u|H1(Ω) + ‖∆u‖L2(Ω)

}
.

Proof. First, recall that 〈·, ·〉 above denotes the dual pairing betweenH−1/2(Γ)
and H1/2(Γ). Sometimes we will write 〈·, ·〉Γ in order to emphasize the ma-
nifold under consideration. Note also that ∆u ∈ L2(Ω) means that the
distributional Laplacian of u is in L2(Ω). By the trace theorem we have
γ0Ew = w for all w ∈ H1/2(Γ). We define g ∈ H−1/2(Γ) by

〈g, w〉 =

∫
Ω

∇u · ∇(Ew) dx+

∫
Ω

(∆u) Ew dx for w ∈ H1/2(Γ) .

Obviously, g is well-defined and really in H−1/2(Γ). We first show that this g
fulfills the identity stated in the lemma. In a second step we will show that
g is unique.

Let v ∈ H1(Ω) and set v0 := v − Eγ0v. Then, by the trace theorem,
γ0v0 = 0 and thus, v0 ∈ H1

0 (Ω) due to Lemma 4.7. Since C∞
0 (Ω) is dense

in H1
0 (Ω), we can approximate v0 by a sequence (ϕn) ∈ C∞

0 (Ω) such that
ϕn → v0 in the H1-norm. Using this sequence we can conclude from the
definition of the distributional derivatives of u that∫

Ω

∇u·∇v0 dx = lim
n→∞

∫
Ω

∇u·∇ϕn dx = lim
n→∞

∫
Ω

(−∆u)ϕn dx =

∫
Ω

(−∆u) v0 dx .

From this identity and the definition of g we can conclude that∫
Ω

∇u · ∇v dx =

∫
Ω

∇u · ∇(v0 + Eγ0v) dx

=

∫
Ω

∇u · ∇v0 dx+

∫
Ω

∇u · ∇(Eγ0v) dx

=

∫
Ω

(−∆u) v0 dx+ 〈g, γ0v〉 −
∫

Ω

(∆u) Eγ0v dx

=

∫
Ω

(−∆u) v dx+ 〈g, γ0v〉 .

Assume now that g1, g2 ∈ H−1/2(Γ) meet the requirements of the lemma.
Then the above identities imply that

〈g2 − g1, γ0v〉 = 0 ∀v ∈ H1(Ω) .

However, γ0 : H1(Ω)→ H1/2(Γ) is surjective. Hence,

〈g2 − g1, w〉 = 0 ∀w ∈ H1/2(Γ) =⇒ g2 = g1 ,
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which means that g is unique.
Finally, we show that g is bounded in terms of u. The definition of g, the

trace theorem, and the Cauchy-Schwarz inequality yield

‖g‖H−1/2(Γ) = sup
v∈H1/2(Γ)\{0}

|〈g, v〉|
‖v‖H1/2(Γ)

≤ sup
v∈H1/2(Γ)\{0}

1

c−1
IT ‖Ev‖H1(Ω)

∣∣∣ ∫
Ω

∇u · ∇(Ev) dx+

∫
Ω

∆u(Ev) dx
∣∣∣

≤ sup
v∈H1/2(Γ)\{0}

cIT

‖Ev‖H1(Ω)

{
|u|H1(Ω) |Ev|H1(Ω) + ‖∇u‖L2(Ω) ‖Ev‖L2(Ω)

}
.

Since |Ev|H1(Ω) ≤ ‖Ev‖H1(Ω) and ‖Ev‖L2(Ω) ≤ ‖Ev‖H1(Ω) the denominator
finally cancels and we obtain the desired bound for ‖g‖H−1/2(Γ).

Corollary 4.13. Let u ∈ H1(Ω) and f ∈ H1(Ω)∗ such that −∆u = f weakly
in Ω, i. e., ∫

Ω

∇u · ∇ϕdx = 〈f, ϕ〉 ∀ϕ ∈ D(Ω) .

Then there exists a unique linear form g ∈ H−1/2(Γ) such that∫
Ω

∇u · ∇v dx = 〈f, v〉Ω + 〈g, v〉Γ ∀v ∈ H1(Ω) .

Moreover,

‖g‖H−1/2(Γ) ≤ cIT

{
|u|H1(Ω) + ‖f‖H1(Ω)∗

}
Proof. The proof follows the line of the proof of Lemma 4.12, except that we
replace

∫
Ω
(∆u) Ev dx by −〈f, Ev〉 and we use the above assumptions as well

as the fact that the linear form f is continuous.

Note that g in Lemma 4.12 depends on u and on ∆u. In Corollary 4.13 it
depends on u and on f which is somehow−∆u. Since the identities generalize
Green’s first identity, we write

γ1u := g ,

being aware that we can only use this operator when ∆u ∈ L2(Ω) or if u
fulfills a weak Poisson equation. Occasionally, we may also write ∂u

∂n
:= g.

With the definitions of g and the bounds in terms of u, ∆u, and f , we see that
the operator γ1 is linear and continuous. The following examples illustrate
this generalized normal derivative.
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Example 4.14. 1. We consider a pure Dirichlet problem with f ∈ L2(Ω).
Starting from the classical formulation

−∆u = f in Ω, u = 0 on Γ

we derive as usual that we wish to find u ∈ H1
0 (Ω) satisfying

−∆u = f weakly in Ω .

The normal derivative γ1u is then characterized by the identity

〈γ1u, w〉 =

∫
Ω

∇u · ∇(Ew) dx−
∫

Ω

f (Ew) dx for w ∈ H1/2(Γ) ,

and it is independent of the choice of the extension E as long it fulfills
the requirements from the trace theorem.

2. We now consider a pure Neumann problem with f ∈ L2(Ω) and gN ∈
H−1/2(Γ). Staring from the classical formulation

−∆u = f in Ω,
∂u

∂n
= gN on Γ

we look for a function u ∈ H1(Ω) that satisfies

−∆u = f weakly in Ω .

Due to Lemma 4.12, u has a normal derivative γ1u ∈ H−1/2(Γ) defined
by

〈γ1u, γ0v〉 =

∫
Ω

∇u · ∇v dx−
∫

Ω

f v dx ∀v ∈ H1(Ω) .

Requiring that γ1u = gN in the sense of H−1/2(Γ) this yields to the
equation∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx+ 〈gN , v〉 ∀v ∈ H1(Ω) ,

which is the usual variational formulation for the pure Neumann prob-
lem.

3. Later on we will mostly consider the case f = 0, for which Corol-
lary 4.13 is not needed. For advanced readers only: assume that
f ∈ H1(Ω)∗ is defined by

〈f, v〉 :=

∫
Ω

f1 v dx+ 〈f2, γ0v〉Γ for v ∈ H1(Ω) ,
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with f1 ∈ L2(Ω) and f2 ∈ H−1/2(Γ). Then

〈g, w〉 =

∫
Ω

∇u · ∇(Ew) dx−
∫

Ω

f1 Ew dx− 〈f2, w〉 ∀w ∈ H1/2(Γ) ,

which implies the Green type identity∫
Ω

∇u · ∇v dx =

∫
Ω

f1 v dx+ 〈f2 + g, γ0v〉Γ ∀v ∈ H1(Ω) .

In that sense g equals to what is needed to complete Green’s identity.

4.3 The transmission property

In this subsection we derive the prerequisites for the representation formula,
Green’s third identity.

Assume first that Ω is bounded and define by Ωext := Rd \ Ω its com-
plement, also called the exterior domain. Recall, that since Ω is Lipschitz
also Ωext is Lipschitz, that the Sobolev spaces Hs(Ωext) are well-defined and
that H1/2(Γ) is the trace space of H1(Ωext) as well. In order to emphasize
expressions related to Ω, the interior of Γ, we write

Ωint := Ω, γint
0 := γ0, γint

1 := γ1 .

When applying the trace theorem, Lemma 4.12, and Corollary 4.13 on Ωext

we obtain trace operators γext
0 and γext

1 . To this end we consider a function
u ∈ H1(Ωint ∪ Ωext), where

H1(Ωint ∪ Ωext) := {u ∈ L2(Rd) : u|Ωint ∈ H1(Ωint), u|Ωext ∈ H1(Ωext)} .

Moreover, assume that

−∆u = f int weakly in Ωint ,

−∆u = f ext weakly in Ωext ,
(4.1)

for some linear forms f int ∈ H1(Ωint)∗ and f ext ∈ H1(Ωext)∗. Then, by slightly
modifying Corollary 4.13, we have∫

Ωint

∇u · ∇v dx = 〈f int, v〉+ 〈γint
1 u, γint

0 v〉 ∀v ∈ H1(Ωint) ,∫
Ωext

∇u · ∇v dx = 〈f ext, v〉 − 〈γext
1 u, γext

0 v〉 ∀v ∈ H1(Ωext) .

(4.2)

Note the sign flip in the second line. Here, γext
1 u generalizes ∂u

∂n
with n being

the outward unit normal vector to Γ, i. e., inward with respect to Ωext.
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Definition 4.15. Suppose that u ∈ H1(Ωint ∪ Ωext) such that (4.1) holds.
Then we define

f ∈ H1(Rd)∗ : 〈f, v〉 = 〈f int, v|Ωint〉+ 〈f ext, v|Ωext〉 for v ∈ H1(Rd) ,

[γ0u] := γext
0 u− γint

0 u ∈ H1/2(Γ) ,

[γ1u] := γext
1 u− γint

1 u ∈ H−1/2(Γ) .

We refer to [γ0u] and [γ1u] as the jump of the trace and the normal derivative,
respectively. If [γ0v] = 0 (which is the case if v ∈ H1(Rd)) we have γ0v =
γint

0 v = γext
0 v.

Using the above definitions we can conclude from (4.2) that∫
Ωint

∇u ·∇v dx+

∫
Ωext

∇u ·∇v dx = 〈f, v〉−〈[γ1u], γ0 v〉 ∀v ∈ H1(Rd) .

With the next definition and lemma we slowly approach the representa-
tion formula.

Definition 4.16. We define the adjoint trace operators

γ∗0 : H−1/2(Γ)→ E ′(Rd) : 〈γ∗0w, ϕ〉 := 〈w, γ0ϕ〉 for ϕ ∈ E(Rd) ,

γ∗1 : H1/2(Γ)→ E ′(Rd) : 〈γ∗1v, ϕ〉 := 〈γ1ϕ, v〉 for ϕ ∈ E(Rd) .

Note further that a function u ∈ H1(Ωint ∪ Ωext) can be seen as a distri-
bution in D′(Rd) and also in S ′(Rd). Hence, its distributional Laplacian ∆u
is in D′(Rd) and also in D′(Rd), and it fulfills

〈∆u, ϕ〉 = 〈u, ∆ϕ〉 ∀ϕ ∈ D(Rd) or S(Rd) .

Lemma 4.17. Assume that u ∈ H1(Ωint ∪ Ωext) fulfills (4.1). Then

〈−∆u, ϕ〉 = 〈f, ϕ〉+ 〈γ∗1 [γ0u], ϕ〉 − 〈γ∗0 [γ1u], ϕ〉 ∀ϕ ∈ D(Rd) .

In short:
−∆u = f + γ∗1 [γ0u]− γ∗0 [γ1u] in D′(Rd) .

Proof. Consider ϕ ∈ D(Rd). In the following we use the distributional defi-
nition of −∆u and the fact that the distribution u is defined by integrating
the piecewise H1-function u against the test function over Ωint and Ωext sep-
arately.

〈−∆u, ϕ〉 = 〈u, −∆ϕ〉 =

∫
Ωint

u(−∆ϕ) dx+

∫
Ωext

u(−∆ϕ) dx .
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For both terms we use Lemma 4.11 (Green’s first identity) and formula (4.2),

〈−∆u, ϕ〉

=

∫
Ωint

∇u · ∇v dx− 〈γ1ϕ, γ
int
0 u〉+

∫
Ωext

∇u · ∇v dx+ 〈γ1ϕ, γ
ext
0 u〉

= 〈f int, ϕ〉+ 〈γint
1 u, γ0ϕ〉 − 〈γ1ϕ, γ

int
0 u〉 +

+ 〈f ext, ϕ〉 − 〈γext
1 u, γ0ϕ〉+ 〈γ1ϕ, γ

ext
0 u〉

= 〈f, ϕ〉 − 〈[γ1u], γ0ϕ〉︸ ︷︷ ︸
=〈γ∗0 [γ1u], ϕ〉

+ 〈γ1ϕ, [γ0u]〉︸ ︷︷ ︸
=〈γ∗1 [γ0u], ϕ〉

.

In the last steps we just used the definitions of f , the trace jumps, and the
adjoint trace operators.

We will now convolute the distributional equation obtained in Lemma 4.17
with the fundamental solution, in order to obtain u instead of −∆u on the
left hand side.

4.4 Volume and surface potentials, Green’s

third identity

We define the Newton potential

(Gϕ)(x) :=

∫
Rd

U∗(x, y)ϕ(y) dy for ϕ ∈ S(Rd) .

The integral above is understood as a weakly singular integral: if we would
just integrate over a bounded set, the integral is well-defined as a weakly
singular one (at least for the fundamental solution we consider), and one can
also show that the resulting function is continuous. Since the test function ϕ
is rapidly decreasing, the integral over the whole set Rd is also well-defined.
Moreover since our fundamental solutions fulfill U∗(x, y) = U∗(x− y, 0), we
can conclude that Gϕ ∈ C1(Rd):

∂

∂xi

(Gϕ)(x) =
∂

∂xi

∫
Rd

U∗(x− y, 0)ϕ(y) dy =

=
∂

∂xi

∫
Rd

U∗(z, 0)ϕ(x− z) dz =

= −
∫

Rd

U∗(z, 0)
∂ϕ

∂xi

(x− z) dz =
(
G
∂ϕ

∂xi

)
(x) ,
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where we have substituted z for x − y. Applying this argument recursively
yields that Gϕ ∈ C∞(Rd). One can also show that Gϕ itself is rapidly
decreasing. Summarizing,

G : S(Rd)→ S(Rd) .

We define the more general Newton potential

G : S ′(Rd)→ S ′(Rd) : 〈Gψ, ϕ〉 := 〈ψ, Gϕ〉 for ψ ∈ S ′(Rd), ϕ ∈ S(Rd) .

Lemma 4.18. Let u ∈ S ′(Rd). Then

−∆Gu = G(−∆u) = u .

Proof. Let ϕ ∈ S(Rd).

〈−∆Gu, ϕ〉 = 〈Gu, −∆ϕ〉 = 〈u, G(−∆ϕ)〉 =

=
〈
u(x),

∫
Rd

U∗(x, y) (−∆yϕ)(y) dy
〉

x

We now interpret the inner integral as a distributional evaluation of U∗(x, y)
for a fixed x. Using the distributional Laplacian, the symmetry of the fun-
damental solution, and the fact that −∆yU

∗(y, x) = δx(y), we obtain

〈−∆Gu, ϕ〉 =
〈
u(x),

〈
−∆y U

∗(x, y)︸ ︷︷ ︸
=U∗(y, x)

, ϕ(y)
〉

y︸ ︷︷ ︸
= 〈δx, ϕ〉 = ϕ(x)

〉
x

= 〈u, ϕ〉 .

The proof of the second assertion works analogously, one just has to exploit
that δy(x) = δx(y).

Exercise. Prove the second assertion of Lemma 4.18.

Lemma 4.19. If the function u ∈ H1(Ωint ∪ Ωext) has compact support in
Rd and (4.1) holds, then

u ∈ S ′(Rd) and f ∈ S ′(Rd) .

Proof. Let ϕ ∈ S(Rd) and assume that u is supported on K ⊂⊂ Rd. Then

〈u, ϕ〉 =

∫
Rd

uϕ dx =

∫
K

uϕ dx < ∞

because u and ϕ are square-integrable overK. Obviously 〈u, ϕ〉 is linear in ϕ.
Furthermore, 〈u, ϕn〉 converges to zero if ϕn converges sequentially to zero,
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which is already seen from the fact that ϕn ∈ C∞(K) converges uniformly
to zero. Thus, u is well-defined as a temperate distribution. Secondly, since
S(Rd) is dense in H1(Rd),

〈f, ϕ〉 = 〈f int, ϕ|Ωint︸ ︷︷ ︸
∈H1(Ωint)

〉+ 〈f ext, ϕ|Ωext︸ ︷︷ ︸
∈H1(Ωext)

〉 < ∞ ,

and so f is well-defined as a temperate distribution too.

Theorem 4.20. Let u ∈ H1(Ωint ∪Ωext) have compact support in Rd and let
(4.1) hold. Then the abstract representation formula

u = Gf +Gγ∗1 [γ0u]−Gγ∗0 [γ1u]

holds in the sense of S ′(Rd).

Proof. Thanks to Lemma 4.19, u, f ∈ S ′(Rd). Since E ′(Rd) ⊂ S ′(Rd), also
γ∗1 [γ0u], γ

∗
0 [γ1u] ∈ S ′(Rd). Under the assumption of the compact support the

statement of Lemma 4.17 also holds for test functions in S(Rd) (the proof is
analogous). Hence,

−∆u = f + γ∗1 [γ0u]− γ∗0 [γ1u] in S ′(Rd) .

Applying G to the whole equation, Lemma 4.18 implies the assertion.

We will now define two surface potentials and decode the statement of
the above theorem.

Definition 4.21. We define the single layer potential

Ṽ := Gγ∗0 : H−1/2(Γ)→ S ′(Rd) ,

and the double layer potential

W̃ := Gγ∗1 : H1/2(Γ)→ S ′(Rd) .

For ϕ ∈ S(Rd) and w sufficiently smooth we have

〈Ṽ w, ϕ〉S′×S = 〈w, γ0Gϕ〉H−1/2×H1/2 =

∫
Γ

w(x) (γ0Gϕ)(x) dsx =

=

∫
Γ

w(x)

∫
Rd

U∗(x, y)ϕ(y) dy dsx =

∫
Rd

∫
Γ

U∗(x, y)w(x) dsx ϕ(y) dy ,

i. e., we have the integral representation

(Ṽ w)(y) =

∫
Γ

U∗(x, y)w(x) dsx ,
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provided that this integral is well-defined. We discuss this in more detail in
Lemma 4.25 below. A similar representation can be derived for the double
layer potential operator. There, however, the story is more complicated and
it will be made clear with Lemma 4.26 and Lemma 4.27 below.

It is immediate from the definitions of Ṽ and W̃ , and from the properties
of G that

−∆Gf = f , −∆Ṽ w = γ∗0w, −∆W̃v = γ∗1w .

Having a closer look to the definitions of the adjoint trace operators we find
that the distributions γ∗0w, γ∗1v act only on the traces of their test functions,
not on the values away from Γ. We can write

−∆Ṽ w = 0, −∆W̃v = 0, in Ωint ∪ Ωext = Rd \ Γ ,

see also the proof of Lemma 4.23 below. With Theorem 4.20 we have that
(4.1) implies that

u = Gf + W̃ [γ0u] + Ṽ [γ1u] in S ′(Rd) .

We also call this equation Green’s third identity. The two identities above
imply that Green’s third identity is consistent: the represented function in-
deed fulfills Poisson’s equation in Ωint and Ωext. If we are only interested in
Laplace’s equation in Ω = Ωint, we can formally set f int = f ext = 0, u|Ωext = 0
and obtain

u = −W̃γint
0 u+ Ṽ γint

1 u in E ′(Ω) . (4.3)

In order to obtain boundary integral equations we will apply trace op-
erators γint

0 , γint
1 to (4.3). Before we can do that we must ensure that both

surface potentials are really in H1.

Lemma 4.22. Let ζ ∈ C∞
0 (Rd) be a function which equals 1 in a neighbor-

hood of Ωint. Then

ζṼ : H−1/2(Γ)→ H1(Rd) ,

ζW̃ : H1/2(Γ)→ H1(Ωint ∪ Ωext)

are continuous linear operators. Note that Ṽ is continuous across Γ. This is
in general not the case for W̃ . Moreover, Ṽ , W̃ are C∞ in Rd \ Γ.
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Proof. It is rather easy to see that γ∗0 : H−1/2(Γ) → H1(Rd)∗ by exploiting
that S(Rd) is dense in H1(Rd). Therefore, the proof is reduced to showing
that ζG : H1(Rd)∗ → H1(Rd), which can be done, e. g., using the Fourier
transform as in [Steinbach]. For the double layer potential, it turns out that
γ∗1 : H1/2(Γ)→ H1(Ωint∪Ωext) only, which finally results in the discontinuity.
An alternative prove can be found in [McLean].

The following lemma clarifies in which sense the surface potentials are
(dis)continuous.

Lemma 4.23. The operators

γint
0 Ṽ : H−1/2(Γ)→ H1/2(Γ) , γint

1 Ṽ : H−1/2(Γ)→ H−1/2(Γ) ,

γint
0 W̃ : H1/2(Γ)→ H1/2(Γ) , γint

1 W̃ : H1/2(Γ)→ H−1/2(Γ)

and the corresponding ones with the exterior traces are linear and continuous.
The following jump relations hold,

[γ0Ṽ w] = 0 , [γ1Ṽ w] = −w ∀w ∈ H−1/2(Γ) ,

[γ0W̃v] = v , [γ1W̃v] = 0 ∀v ∈ H1/2(Γ) .

Proof. The traces γint
0 Ṽ w, γint

0 W̃v (and also the exterior ones) are well-
defined in H1/2(Γ) due to Lemma 4.22 and the trace theorem. Recall that

−∆Ṽ w = γ∗0w , −∆W̃v = γ∗1v in E ′(Rd) .

Also,

〈γ∗0w, ϕ〉 = 〈w, γ0ϕ︸︷︷︸
=0

〉 = 0

〈γ∗1w, ϕ〉 = 〈w, γ1ϕ︸︷︷︸
=0

〉 = 0

 ∀ϕ ∈ D(Ωint) ⊂ E(Rd) ,

because ϕ has compact support. The same holds of course for ϕ ∈ D(Ωext).

Therefore, each of Ṽ w and W̃v satisfy the weak Laplace equation in Ωint and
Ωext, and so their trace γint

1 and γext
1 are well-defined in H−1/2(Γ).

The jump relation [γ0Ṽ w] = 0 follows immediately from Lemma 4.22.

We prove now that [γ1Ṽ w] = −w. A proof of the two other relations can
be found in [McLean]. Let ζ ∈ D(Rd) with ζ|U = 1 where U is a bounded
domain such that Ωint ⊂⊂ U . Then Lemma 4.17 implies that

〈−∆u, ϕ〉 = 0− 〈γ∗0 [γ1u], ϕ〉 = −〈[γ1u], γ0ϕ〉 ∀ϕ ∈ D(U) .
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Since −∆Gγ∗0 = γ∗0 we have

〈−∆u, ϕ〉 = 〈γ∗0w, ϕ〉 = 〈w, γ0ϕ〉 ∀ϕ ∈ D(U) .

Since C∞(Γ) is dense in H1/2(Γ) the two identities imply that [γ1u] = −w.

Next we discuss integral representations of the traces of Ṽ and W̃ .

4.5 Boundary integral operators and their prop-

erties

Definition 4.24. We define the single layer potential operator

V : H−1/2(Γ)→ H1/2(Γ) : V := γ0Ṽ .

Lemma 4.25. For w ∈ H−1/2(Γ) ∩ L∞(Γ) we have the representation

(V w)(x) =

∫
Γ

U∗(x, y)w(y) dsy ∀x ∈ Γ

as a weakly singular surface integral.

Proof. Following the paragraph after Definition 4.21 and using that U∗(x, y) =
U∗(y, x) we obtain that for all ϕ ∈ S(Rd),

〈Ṽ w, ϕ〉 =

∫
Γ

w(y)

∫
Rd

U∗(x, y)ϕ(x) dx︸ ︷︷ ︸
∈S(Rd)

dsy

=

∫
Γ

w(y) limex→x

∫
Rd

U∗(x̃, y)ϕ(x) dx dsy

=

∫
Rd

ϕ(x)
[

limex→x

∫
Γ

U∗(x̃, y)w(y) dsy︸ ︷︷ ︸
∈H1(K) ∀K⊂⊂Rd

]
dx .

The last line must be interpreted as follows. The function inside the limit is
continuous provided that x̃ 6∈ Γ. Thanks to Lemma 4.22 the limit for x̃ →
x ∈ Γ exists at least the sense of H1/2(Γ). Following, e. g., [Sauter/Schwab]
it is even C(Γ). We now show that excluding a ball of radius ε around the
singularity in the integral in the assertion of the lemma, we converge to the
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same term as ε → 0. To this end, let x ∈ Γ and ε > 0 be fixed and choose
x̃ ∈ Ω with |x− x̃| < ε. In then suffices to show that∣∣∣∣ ∫

Γ

U∗(x̃, y)w(y) dsy −
∫

y∈Γ: |x−y|>ε

U∗(x, y)w(y) dsy

∣∣∣∣
≤
∣∣∣∣ ∫

y∈Γ:

|x−y|>ε

[
U∗(x̃, y)− U∗(x, y)

]
w(y) dsy

∣∣∣∣
︸ ︷︷ ︸

=: (I)

+

∣∣∣∣ ∫
y∈Γ:

|x−y|≤ε

U∗(x̃, y)w(y) dsy

∣∣∣∣
︸ ︷︷ ︸

=: (II)

converges to zero as ε→ 0 and x̃→ x. Since everything is continuous in the
first term, we get that

limex→x
(I) = 0 .

The remaining term can be estimated as follows.

(II) ≤ ‖w‖L∞(Γ∩Bε(x))

∫
Γ∩Bε(x)

|U∗(x̃, y)| dsy ≤ ‖w‖L∞(Γ)

∫
Γ∩B2ε(ex)

|U∗(x̃, y)| dsy .

In case of our fundamental solutions, the integral on the right hand side can
be shown to converge to zero as ε → 0. Here we surrender a precise proof
but only present a plausible argument.

For d = 2, we consider the case that x̃ = x and that Γ is a straight line.

&%
'$r̃

x Γ

Then we have

(II) ≤ 1

2π

∫
y∈Γ:|y−ex|<2ε

∣∣ log |y − x̃|
∣∣ dsy =

1

2π

∫ 2ε

−2ε

∣∣ log |z|
∣∣ dz

= − 1

π

∫ 2ε

0

log |z| dz = −2ε

π

(
log(2ε)− 1

) ε→0−→ 0 ,

where we have used the anti-derivative of the logarithm and de l’Hospital in
the last step. Thus, if ε→ 0 and x̃→ x, then (I) + (II)→ 0.

For d = 3, we consider the case that x̃ = x and that Γ is a plane, i. e.,
the intersection of Γ and B2ε(x̃) is a disc. Introducing polar coordinates we
obtain

(II) ≤ 1

4π

∫
y∈Γ:|y−ex|<2ε

1

|y − x̃|
dsy =

1

4π

∫ 2π

0

∫ 2ε

0

1

r
r dr dφ = ε → 0 .
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The integral representation in Lemma 4.25 will help us when discretiz-
ing boundary integral equations. There, we will discretize the trace space
H1/2(Γ) with continuous piecewise affine linear functions (the trace of typi-
cal finite element functions on Ω), and the space H−1/2(Γ), which is the space
containing normal derivatives, with piecewise constant functions. These are
for sure in L∞(Γ).

Lemma 4.26. For w ∈ H−1/2(Γ) ∩ L∞(Γ) we have the representation

〈γint
1 Ṽ w, v〉 = 〈σ w +K ′w, v〉 ∀v ∈ H1/2(Γ) ,

with σ defined according to (2.4), i. e., σ = 1
2

almost everywhere, and

(K ′w)(x) := lim
ε→0

∫
y∈Γ:|y−x|≥ε

∂

∂nx

U∗(x, y)w(y) dsy for x ∈ Γ .

Proof. Note first that K ′w := γint
1 Ṽ w− σw is well-defined in H−1/2(Γ), i. e.,

it remains to show that K ′w obeys the above integral representation. Due
to the fact that C∞(Γ) is dense in H1/2(Γ) it suffices to show the identity

for v = γint
0 ϕ with ϕ ∈ C∞(Ω). Set u := Ṽ w. Then the definition of γint

1 (cf.
Lemma 4.12) and Lemma 4.22 imply that

〈γint
1 u, γint

0 ϕ〉 =

∫
Ω

∇u · ∇ϕdx + 0

=

∫
Ω

∇x

[ ∫
Γ

U∗(y, x)︸ ︷︷ ︸
=U∗(x, y)

w(y) dsy

]
︸ ︷︷ ︸

∈C∞(Ω)

·∇xϕ(x) dx

=

∫
Ω

∇x

[
lim
ε→0

∫
y∈Γ:|x−y|≥ε

U∗(x, y)w(y) dsy

]
· ∇xϕ(x) dx

=

∫
Γ

w(y) lim
ε→0

∫
x∈Ω:|x−y|≥ε

∇xU
∗(x, y) · ∇xϕ(x) dx dsy .

Recall that ϕ ∈ C∞(Ω) and U∗(·, y) ∈ C∞(Ω \ Bε(y)). Hence we can use
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Green’s identity on Ω \Bε(y).∫
Ω\Bε(y)

∇xU
∗(x, y) · ∇xϕ(x) dx =

∫
Ω\Bε(y)

−∆xU
∗(x, y)︸ ︷︷ ︸

=0

ϕ(x) dx +

+

∫
Γ\Bε(y)

∂

∂nx

U∗(x, y)ϕ(x) dsx

︸ ︷︷ ︸
=: (I)

+

∫
∂Bε(y)∩Ω

∂

∂nx

U∗(x, y)
[
ϕ(x)− ϕ(y)

]
dsx

︸ ︷︷ ︸
=: (II)

+

+ ϕ(y)

∫
∂Bε(y)∩Ω

∂

∂nx

U∗(x, y) dsx︸ ︷︷ ︸
=: (III)

,

where we have artificially introduced the last term by subtracting and adding
ϕ(y). The term (I) will lead to the operator K ′. For the second term we
have

(II) ≤ max
x∈∂Bε(y)∩Ω

|ϕ(x)− ϕ(y)|︸ ︷︷ ︸
ε→0−→ 0

∫
∂Bε(y)∩Ω

∣∣∣ ∂
∂nx

U∗(x, y)
∣∣∣ dsx︸ ︷︷ ︸

=: (IIa)

.

A side computation shows that

d = 2 : ∇xU
∗(x, y) = − 1

2π
∇x log |x− y| = − 1

2π

1

|x− y|
x− y
|x− y|

,

d = 3 : ∇xU
∗(x, y) =

1

4π
∇x

1

|x− y|
= − 1

4π

1

|x− y|2
x− y
|x− y|

.

Using that nx = y−x
|x−y| for x ∈ ∂Bε(y)∩Ω (the normal vector must be outward

to Ω \Bε(y)), this implies ∂
∂nx

U∗(x, y) = 1
2π(d−1)

1
|x−y|d−1 . Hence,

(IIa) ≤
∫

x∈Ω:|x−y|=ε

1

2π(d− 1)

1

|x− y|d−1︸ ︷︷ ︸
=εd−1

dsx = 1 ,

and so (II)→ 0 as ε→ 0. For the remaining term we obtain

(III) = ϕ(y)

∫
∂Bε(y)∩Ω

1

2π(d− 1)

1

|x− y|d−1
dsx

= ϕ(y)
1

2π(d− 1)

1

εd−1

∫
x∈Ω:|x−y|=ε

dsx
ε→0−→ σ(y)ϕ(y) .

Collecting all the terms the assertion follows with ε→ 0.
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Lemma 4.27. For v ∈ H1/2(Γ) ∩ L∞(Γ) we have the representation

(γint
0 W̃ v)(x) =

(
− 1 + σ(x)

)
v(x) + (K v)(x) for x ∈ Γ ,

with σ(x) defined as before and

(K v)(x) = lim
ε→0

∫
y∈Γ:|y−x|≥ε

[ ∂

∂ny

U∗(x, y)
]
v(y) dsy for x ∈ Γ .

Proof. The proof is similar to the one before.

Exercise. Show thatK : H1/2(Γ)→ H1/2(Γ) andK ′ : H−1/2(Γ)→ H−1/2(Γ)
are adjoint to each other, i. e.,

〈w, K v〉 = 〈K ′w, v〉 ∀v ∈ H1/2(Γ), w ∈ H−1/2(Γ) .

We call K the double layer potential operator and K ′ the adjoint double
layer potential operator.

Lemma 4.28. The hypersingular (boundary integral) operator

D := −γint
1 W̃ : H1/2(Γ)→ H−1/2(Γ)

has the following representation for v ∈ H1/2(Γ) ∩ C(Γ),

(D v)(x) = −
∫

Γ

∂

∂nx

∂

∂ny

{
U∗(x, y)

[
v(y)− v(x)

]}
dsy for x ∈ Γ ,

to be understood as a Cauchy principal value integral.

Proof. We give only a sketch of a proof. First we show that a straightforward
technique fails. For x̃ ∈ Ω, we have

(W̃ v)(x̃) =
1

2π(d− 1)
lim
ε→0

∫
Γ\Bε(ex)

(x̃− y) · ny

|x̃− y|d
v(y) dsy .

In order to obtain (D v)(x) we have form nx · ∇ of the expression and send
x̃ to x. Exchanging formally the limits x̃→ x and ε→ 0 and computing the
normal derivative we obtain

(Dεv)(x) =
1

2π(d− 1)

∫
Γ\Bε(x)

[
− nx · ny

|x− y|d
+d

(x− y) · nx (x− y) · ny

|x− y|d+2

]
v(y) dsy .

However the limit ε→ 0 of this integral does not exist.
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As a trick, we apply Green’s third identity (4.3) from page 38 to the
constant function u = 1 on Ω. Then we get that

1 = −W̃ 1 + 0 =⇒ ∇ex(W̃ 1)(x̃) = 0 ∀x̃ ∈ Ω .

Here and in the following 1 denotes the constant either on Γ or on Ω (which
one should be always clear from the context).

Since (D v)(x) = − lim
Ω3ex→x

nx · ∇ex(W̃ v)(x̃) for smooth functions v, we have

D 1 = 0 .

Thus we can write

(D v)(x) = lim
Ω3ex→x

nx · ∇ex
∫

Γ

∂

∂ny

{
U∗(x, y)

[
v(x)︸︷︷︸

const w.r.t. ex, y

− v(y)
]}
dsy

= −
∫

Γ

∂

∂nx

∂

∂ny

{
U∗(x, y)

[
v(x)− v(y)

]}
dsy ,

where we omit details for the last part.

We also discuss an alternative representation of the hypersingular opera-
tor which is often used in implementations. First, let d = 2. For ṽ ∈ C1(Ω)
define

curl ṽ :=

(
∂ev
∂x2

− ∂ev
∂x1

)
.

Let Γ ∈ C1
pw with the smooth boundary parts {Γk}. For v ∈ C1(Γk) we can

find an extension ṽ ∈ C1(Ω) such that ṽ|Γk
= v. Then we define

curlΓk
v(x) := n(x) · curl ṽ(x) for x ∈ Γk .

We show that the definition of curlΓk
v is independent of the extension.

Let Γk = {yk(t) : t ∈ (tk, tk+1)}. Then dsy = |y′k(t)| dt and n(x) =
1

|y′k(t)|

(
y′k,2(t) | − y′k,1(t)

)T
in case of positive orientation. We obtain∫

Γk

curlΓk
v dsy =

∫ tk+1

tk

1

|y′k(t)|

[
y′k,2(t)

∂ṽ

∂x2

(
yk(t)

)
+ y′k,1(t)

∂ṽ

∂x1

(
yk(t)

)]
|y′k(t)| dt

=

∫ tk+1

tk

d

dt
v
(
yk(t)

)
dt .

Since we can make the pieces Γk arbitrary small, this means that curlΓk
is a

tangential derivative. Finally, for v ∈ C1
pw(Γ) (with respect to the partition

into the Γk) we define

curlΓv(x) := curlΓk
v(x) for x ∈ Γk .
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Lemma 4.29. For d = 2, Γ ∈ C1
pw and u, v ∈ H1/2(Γ)∩C(Γ)∩C1

pw(Γ), we
have

〈Du, v〉Γ = − 1

2π

∫
Γ

curlΓv(x)

∫
Γ

log |x− y| curlΓu(y) dsy dsx ,

with weakly singular integrals.

The proof that can be found in [Steinbach] is based on the following
integration by parts formula,∫

Γ

v(y) curlΓw(y) dsy = −
∫

Γ

curlΓv(y)w(y) dsy+
∑

k

v
(
yk(t)

)
w
(
yk(t)

)∣∣∣tk+1

tk︸ ︷︷ ︸
=0 if v∈C(Γ)

.

For d = 3 we define the surface-curl of v ∈ C1
pw(Γ) analogously to the

case d = 2, but we have to set

curlΓk
v(x) := n(x)×∇ṽ(x) for x ∈ Γk ,

for an arbitrary extension ṽ ∈ C1(Ω) of v. Note that this is now a vectorial
quantity. However, curlΓv ⊥ n, so we can view it as a two-dimensional
quantity. For almost each x ∈ Γ, curlΓv(x) is a rotated projection of ∇ṽ to
the tangent plane to x. We see (and one can prove) that the definition is
independent of the particular choice of the extension.

Lemma 4.30. For d = 3, Γ ∈ C1
pw and u, v ∈ H1/2(Γ) ∪ C(Γ) ∪ C1

pw(Γ) we
have

〈Du, v〉Γ =
1

4π

∫
Γ

∫
Γ

curlΓv(x) · curlΓu(y)

|x− y|
dsy dsx ,

with weakly singular integrals.

For a proof see [Steinbach].

Remark 4.31. In short we can write

〈Du, v〉 = 〈curlΓu, V curlΓv〉 .

This form is often used in implementations of the Galerkin boundary method.

Exercise. Show that V and D are self-adjoint operators, i. e.,

〈w, V v〉 = 〈v, V w〉 ∀v, w ∈ H−1/2(Γ) ,

〈D v, w〉 = 〈Dw, v〉 ∀v, w ∈ H1/2(Γ) .
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Consider now the weak equation

−∆u = 0 in Ω = Ωint . (4.4)

Then with (4.3) and the previous results we get

γint
0 u = −γint

0 W̃︸ ︷︷ ︸
=(1−σ)I−K

γint
0 u+ γint

0 Ṽ︸ ︷︷ ︸
=V

γint
1 u in H1/2(Γ) ,

γint
1 u = −γint

1 W̃︸ ︷︷ ︸
=D

γint
0 u+ γint

1 Ṽ︸ ︷︷ ︸
=σI+K′

γint
1 u in H−1/2(Γ) .

These are two integral equations relating γint
0 u and γint

1 u (the Cauchy data).
Recall that σ = 1

2
almost everywhere. Summarizing,(

γint
0 u
γint

1 u

)
=

(
1
2
I −K V
D 1

2
I −K ′

)
︸ ︷︷ ︸

=:C

(
γint

0 u
γint

1 u

)
, (4.5)

with the block operator C named after Calderón.

Lemma 4.32. The Calderón operator C is a projection, i. e., C2 = C.

Proof. We fix (ϕ, ψ) ∈ H1/2(Γ)×H−1/2(Γ). Then the function u := Ṽ ψ+W̃ϕ
fulfills −∆u = 0 weakly in Ω, is in H1(Ω), and{

γint
0 u = V ψ + 1

2
ϕ−K ϕ

γint
1 u = 1

2
ψ +K ′ψ +Dϕ

}
⇐⇒

(
γint

0 u
γint

1 u

)
= C

(
ϕ
ψ

)
.

But also

(
γint

0 u
γint

1 u

)
= C

(
γint

0 u
γint

1 u

)
and so C

(
ϕ
ψ

)
= C2

(
ϕ
ψ

)
.

Remark 4.33. 1. Owing to Lemma 4.32, C is called Calderón’s projector.
From the projection properties we get the algebraic identities

V D = (1
2
I +K)(1

2
I −K ′) , V K ′ = K V ,

D V = (1
2
I +K ′)(1

2
I −K) , K ′D = DK .

2. If replace the right hand side in (4.4) by f int, we have to add(
N0f
N1f

)
:=

(
γint

0 Gf
γint

1 Gf

)
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to the right hand side of (4.5), where 〈f, ϕ〉 := 〈f int, ϕ|Ωint〉 for ϕ ∈
D(Rd). If f int is an integrable function we get the weakly singular
integral representations

(N0f)(x) =

∫
Ω

U∗(x, y) f int(y) dy ,

(N1f)(x) =

∫
Ω

∂

∂nx

U∗(x, y) f int(y) dy .

In general, these domain integrals are of course costly. Only for some
functions f int these integrals may be computed analytically or approx-
imated using smoothness or a special structure of f int.

Exercise. Show the algebraic identities in the remark above.

Before discretizing the two BIEs, we study further properties of the
boundary integral operators, among them the ellipticity of the single layer
potential operator V , which makes the Lax-Milgram lemma applicable.

4.5.1 The ellipticity of V and D

We first consider the ellipticity of V and give a proof thereof via the single
layer potential Ṽ on Rd.

Fix w ∈ H−1/2(Γ). Then u := Ṽ w solves

−∆u = 0 weakly in Ωint ,

γint
0 u = V w on Γ ,

and we know from Lemma 4.22 that u ∈ H1(Ωint). Moreover, from Lemma 4.12
we get that

‖γint
1 u‖H−1/2(Γ) ≤ cint

IT

(∫
Ωint

|∇u|2 dx
)1/2

, (4.6)

where cint
IT is the constant in the interior trace inequality. We will use this in-

equality for the following ellipticity proof. There it is of essential importance
that the energy ∫

Ωint

|∇Ṽ w|2 dx

is finite, and this is for sure true since Ṽ w ∈ H1(Ωint). However, if we
integrate over the exterior domain Ωext, this energy could go to infinity.
Nevertheless, assuming that it is finite, we get that

‖γext
1 u‖H−1/2(Γ) ≤ cext

IT

(∫
Ωext

|∇u|2 dx
)1/2

,
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where cext
IT is the constant in the exterior trace inequality. The following

lemma shows the ellipticity of V under the assumption of finite energy.

Lemma 4.34. Define the subspace

H := {w ∈ H−1/2(Γ) : ‖∇Ṽ w‖L2(Rd) <∞} .

Then the single layer potential operator V is H-elliptic, i. e., there exists a
constant cV > 0 such that

〈w, V w〉 ≥ cV ‖w‖2H−1/2(Γ) ∀w ∈ H .

Proof. With the definitions of γint
1 and γext

1 we obtain for u = Ṽ w that∫
Ωint

∇u · ∇v dx = 〈γint
1 u, γint

0 v〉 ,∫
Ωext

∇u · ∇v dx = −〈γext
1 u, γext

0 v〉 ,

for all v ∈ H1(Rd), cf. Lemma 4.12. As a matter of fact the same formula
holds true if we replace v by u even though u 6∈ H1(Rd). This can be seen from
the proof of Lemma 4.12: the extension Eγ0u can be chosen such that it van-
ishes outside a ball U ⊃ Ωint such that still ‖Eγ0u‖H1(Rd) ≤ cext

IT ‖γ0u‖H1/2(Γ).
The fact that w ∈ H ensures that |u|H1(Rd) <∞. From all this and from the
jump relations from Lemma 4.23 we can conclude that∫

Rd

|∇u|2 = −〈[γ1u], γ0u〉 = 〈w, γ0u〉 = 〈w, V w〉 .

The expression on the left hand side is often refered to as the total energy.
Using the two inequalities in the paragraph preceding this lemma, we get

〈w, V w〉 =

∫
Ωint

|∇u|2 dx+

∫
Ωext

|∇u|2 dx

≥ (cint
IT )−2 ‖γint

1 u‖2H−1/2(Γ) + (cext
IT )−2 ‖γext

1 u‖2H−1/2(Γ) .

From the jump relations we can conclude that

‖w‖2H−1/2(Γ) = ‖γint
1 u− γext

1 u‖2H−1/2(Γ) ≤ 2
[
‖γint

1 u‖2H−1/2(Γ) + ‖γext
1 u‖2H−1/2(Γ)

]
≤ 2

min{(cint
IT )−2, (cext

IT )−2}
〈w, V w〉 = 2 max(cint

IT , c
ext
IT )2︸ ︷︷ ︸

=c−1
V

〈w, V w〉 ,

which shows the ellipticity.
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The next lemma shows that the subspace H is not empty, in fact it is
rather large.

Lemma 4.35. Define the subspace

H−1/2
∗ (Γ) :=

{
w ∈ H−1/2(Γ) : 〈w, 1〉 = 0

}
.

Then

(i) For all subsets K ⊂⊂ Rd we have that Ṽ w ∈ H1(K).

(ii) If d = 2 and w ∈ H−1/2
∗ (Γ) we have Ṽ w ∈ H, i. e., ‖∇Ṽ w‖L2(Rd) <∞.

If d = 3 this holds for all w ∈ H−1/2(Γ).

Proof. (i) follows immediately from Lemma 4.22. A proof of (ii) can be found
in [Steinbach] and it involves the concrete fundamental solutions and their
decay behaviour as |x| → ∞.

This implies that V is H−1/2(Γ)-elliptic for d = 3 and H
−1/2
∗ (Γ)-elliptic

for d = 2. In order to see what happens on the “rest” of H−1/2(Γ) we do the
following construction. We seek t ∈ H−1/2(Γ) such that

〈t, V w〉Γ = 0 ∀w ∈ H−1/2
∗ (Γ)

and normalize the solution such that 〈t, 1〉Γ = 1. It turns out that we

can decompose t = t̃ + α1 with t̃ ∈ H
−1/2
∗ (Γ) and α ∈ R, and that this

decomposition is unique: from

1 = 〈t, 1〉Γ = 〈t̃, 1〉︸ ︷︷ ︸
=0

+α 〈1, 1〉Γ

we get that α = |Γ|−1. Hence, we search t̃ ∈ H−1/2
∗ (Γ):

〈t̃, V w〉 = −|Γ|−1 〈1, V w〉 ∀w ∈ H−1/2
∗ (Γ) .

Due to the Lax-Milgram lemma (see Lemma 4.40 below) this variational
equation is uniquely solvable. We define the natural density

weq := t̃+ |Γ|−1 1 .

Note that this functional depends only on Γ. We summarize

• 〈V weq, w〉 = 0 for all w ∈ H−1/2
∗ (Γ),

• 〈weq, 1〉 = 1.
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Exercise. Show that V weq is constant and compute 〈weq, V weq〉. Show also
that for w ∈ H−1/2(Γ) there exists the unique decomposition

w = w̃ + β weq with w̃ ∈ H−1/2
∗ (Γ) and β ∈ R .

If V is elliptic on the one-dimensional space spanned by the natural den-
sity weq, we have a chance to conclude the full ellipticity. The next lemma
(here presented without a proof) gives a sufficient condition.

Lemma 4.36. If d = 2 and diam(Ω) < 1 then 〈weq, V weq〉 > 0.

A proof can be found in [HsiaoWendland]. The constant λ := 〈weq, V weq〉
depends only on Γ. Sometimes one makes use of the logarithmic capacity
capΓ := e−2πλ. Lemma 4.36 states that this capacity is less than one.

Corollary 4.37. If d = 2 and diam(Ω) < 1 then V is H−1/2(Γ)-elliptic. The
same holds for d = 3 without any restriction on Ω.

Proof. The three-dimensional case follows immediately from Lemma 4.34 and
Lemma 4.35. For d = 2 let w ∈ H−1/2(Γ). We know that w = w̃ + β weq

with w̃ ∈ H−1/2
∗ (Γ) and β ∈ R. Hence, by an elementary inequality,

‖w‖2H−1/2(Γ) ≤ 2
[
‖w̃‖2H−1/2(Γ) + β2 ‖weq‖2H−1/2(Γ)

]
.

Recall that 〈weq, V w̃〉 = 0 (i. e., the decomposition is orthogonal with respect
to the V -form) and that V is self-adjoint. Thus, we can conclude from
Lemma 4.34 and Lemma 4.35 that

〈w, V w〉 = 〈w̃, V w̃〉+ 2β 〈weq, V w̃〉︸ ︷︷ ︸
=0

+β2 〈weq, V weq〉

≥ cV ‖w̃‖2H−1/2(Γ) + 〈weq, V weq〉 β2

≥ min
{
cV ,
〈weq, V weq〉
‖weq‖2H−1/2(Γ)

}[
‖w̃‖2H−1/2(Γ) + β2 ‖weq‖2H−1/2(Γ)

]
≥ c̃V ‖w‖2H−1/2(Γ) ,

with c̃V := 1
2
min

{
cV ,

〈weq, V weq〉
‖weq‖2

H−1/2(Γ)

}
.

In the following we assume that if d = 2 then diam(Ω) < 1 such that V
is always elliptic.

Remark 4.38. 1. In order to ensure that the condition diam(Ω) < 1 is
satisfied, a simple coordinate scaling suffices,

x̂ :=
1

2 diam(Ω)
x .
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2. Why do we need this condition for d = 2 at all? The reason is the
logarithm appearing in the fundamental solution. Assume that Ω is
such that V is H−1/2(Γ)-elliptic. With a scalar parameter H > 0 we
define new coordinates

x̂ := H x ,

then dsbx = H2 dsx. Let Γ̂ denote the transformed boundary, and for
w ∈ H−1/2(Γ), let ŵ(x̂) := w(x̂/H). If w is smooth we have

(V w)(x) = − 1

2π

∫
Γ

log |x− y|w(y)dsy

= − 1

2π

∫
bΓ log

(
H−1|x− y|

)
ŵ(ŷ)H−2 dsby

= −H
−2

2π

∫
bΓ log |x− y| ŵ(ŷ) dsby︸ ︷︷ ︸
=H−2 (bV bw)(bx)

+
H−2

2π
log(H)

∫
bΓ ŵ(ŷ) dsby .

We easily show that

〈ŵ, V̂ ŵ〉bΓ =

∫
Γ

w(x)
{
H2 (V w)(x)− log(H)

2π

∫
bΓ ŵ(ŷ) dsby

}
H2 dsx

= H4
{
〈w, V w〉Γ −

log(H)

2π

(∫
bΓ ŵ(ŷ) dsby

)2}
.

We see that by choosing H sufficiently large, we can make the additive
term large enough such that 〈ŵ, V̂ ŵ〉bΓ gets negative for

∫bΓ ŵ ds 6= 0

which is if and only if ŵ 6∈ H−1/2
∗ (Γ̂).

3. In order to compute the natural density (or an approximation thereof),
we can first solve

V w̃eq = 1 in H1/2(Γ) ,

and then set weq := 1
〈 eweq, 1〉Γ

w̃eq.

The next lemma discusses the ellipticity properties of the hypersingular
operator. Therefor, we need to define the subspace

H1/2
∗ (Γ) :=

{
v ∈ H1/2(Γ) : 〈weq, v〉 = 0

}
=
{
v ∈ H1/2(Γ) : 〈V −11, v〉 = 0

}
.
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Lemma 4.39. The hypersingular operator D is H
1/2
∗ (Γ)-elliptic, i. e., there

exists a constant cD > 0 such that

〈D v, v〉 ≥ cD ‖v‖2H1/2(Γ) ∀v ∈ H1/2
∗ (Γ) .

Moreover, D 1 = 0 and there exists a constant c̃D > 0 with

〈D v, v〉 ≥ c̃D |v|2H1/2(Γ) ∀v ∈ H1/2(Γ) .

In the context of elliptic operators (like V and D) we can make use of the
following well-known lemma.

Lemma 4.40 (Lax-Milgram). Let X be a Hilbert space and let A : X → X∗

be linear, bounded, and elliptic, i. e., there exist constants cA, cA > 0 such
that

〈Av, v〉 ≥ cA ‖v‖2X
‖Av‖X∗ ≤ cA ‖v‖X

}
∀v ∈ X .

Then, for all f ∈ X∗, the problem

find u ∈ X : Au = f in X∗

has a unique solution and

‖u‖X ≤
1

cA
‖f‖X∗ .

For a proof see, e. g., the lecture on numerical methods for partial dif-
ferential equations. Note that the lemma states that A−1 : X∗ → X is
well-defined (obviously linear) and continuous.

We can summarize that the single layer potential operator V induces
a norm ‖w‖V :=

√
〈w, V w〉 on H−1/2(Γ), and ‖v‖V −1 :=

√
〈V −1v, v〉 on

H1/2(Γ), whereas the hypersingular operator induces a semi-norm |v|D :=√
〈D v, v〉 on H1/2(Γ).

It is straightforward to show that V is an isomorphism between H
−1/2
∗ (Γ)

and H
1/2
∗ (Γ).

4.5.2 Properties of K and K ′

If Γ is a smooth surface, then K and K ′ are compact operators. This is,
however, not anymore true for a general Lipschitz domain. We only remark
that the operators 1

2
I±K, 1

2
I±K ′ can be shown to be contractions, at least

in the subspaces H
1/2
∗ (Γ) and H

−1/2
∗ (Γ). Therefore, Banach’s fixed point

theorem guarantees the (unique) solvability of equations involving one these
operators, see also [Steinbach].
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4.5.3 Mapping properties

The operators V , K, K ′, and D are so-called pseudo-differential operators of
integer order: for s ∈ [−1

2
, 1

2
] the mappings

V : H−1/2+s(Γ)→ H1/2+s(Γ) ,

K : H1/2+s(Γ)→ H1/2+s(Γ) ,

K ′ : H−1/2+s(Γ)→ H−1/2+s(Γ) ,

D : H1/2+s(Γ)→ H−1/2+s(Γ)

are continuous. Hence, K and K ′ are pseudo differential operators of order 0,
V is of order +1 (a smoothing operator), and D is of order −1 (a differential
type operator). A proof is found in [Costabel].

4.6 Boundary integral equations

4.6.1 The Dirichlet boundary value problem

Consider the classical formulation of a pure Dirichlet problem: for a given
function g on Γ find t = ∂u

∂n
where

−∆u = 0 in Ω ,

u = g on Γ .

Translated into an abstract framework we wish to find t ∈ H−1/2(Γ) such
that

V t = (1
2
I +K)g in H1/2(Γ) . (4.7)

As we have seen before, V : H−1/2(Γ) → H1/2(Γ) is self-adjoint, linear,
bounded, and elliptic. The spaces H±1/2(Γ) are reflexive (i. e., the dual of the
dual is the original space), and so (1

2
I+K)g is really in the dual of H−1/2(Γ).

Due to the Lax-Milgram lemma, equation (4.7) is uniquely solvable and

‖t‖H−1/2(Γ) ≤
1

c̃V
‖(1

2
I +K)g‖H1/2(Γ) ≤ C ‖g‖H1/2(Γ) ,

where in the last step we have used the boundedness of 1
2
I + K. In other

words, t depends continuously on the data g.
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4.6.2 The Steklov-Poincaré operator

In the above setting we can write t = V −1(1
2
I +K)g and define the Steklov-

Poincaré operator
S := V −1(1

2
I +K) .

Obviously, this operator is linear and bounded. Since t = S g above, S is
also called Dirichlet-to-Neumann map. Using the second Calderón equation
in (4.5), we find that

t = D g + (1
2
I +K ′)t ,

and so
S = D + (1

2
I +K ′)V −1(1

2
I +K) .

This shows that S is self-adjoint. It can also be shown that S has the same
ellipticity properties as D, i. e., it induces a semi-norm on H1/2(Γ).

4.6.3 The Neumann boundary value problem

Using the second equation in (4.5) the Neumann boundary value problem
can be written the following way. Given t ∈ H−1/2(Γ), find g ∈ H1/2(Γ):

D g = (1
2
I −K ′)t

Since D is only semi-elliptic and ker(D) = span{1}, we obtain the solvability
condition (1

2
I −K ′)t ∈ range(D) which can be shown to be equivalent to

〈t, 1〉Γ = 0 .

The above equation is then solvable up to a constant. As a regularization
one can use

〈D̃ u, v〉 = 〈Du, v〉+ α 〈weq, u〉 〈weq, v〉
with a positive regularization parameter α. We can also replace weq above

by 1. In both cases, D̃ is bounded and elliptic on the whole of H1/2(Γ) and

therefore invertible. The unique solution g of D̃ g = (1
2
I − K ′)t also solves

D g = (1
2
I −K ′)t, provided that 〈t, 1〉Γ = 0.

4.6.4 Exterior problems

For simplicity consider first the exterior Dirichlet problem. For a given func-
tion g on Γ, find t = ∂u

∂n
such that

−∆u = 0 in Ωext

γext
0 u = g on Γ .
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If we pose this equation in H1(Ωext) we face two problems. First, the surface

potentials Ṽ and W̃ are in general not in H1(Ωext) (cf. Lemma 4.22) and so
it will be difficult to represent the solution. Secondly, solutions in H1(Ωext)
decay very fast, usually not like solutions of physical problems (e. g., acous-
tic or electromagnetic waves propagation). For d = 3 a typical radiation
condition for Laplace’s equation is

|u(x)| = O(|x|−1) as |x| → ∞ .

Enlarging the space to

H1
∗ (Ω

ext) = {u ∈ D′(Ωext) : −∆u = 0 weakly in Ωext ,

u ∈ H1(U) ∀U ⊂⊂ Ωext and

|u(x)| = O(|x|−1) as |x| → ∞}

we can derive the same tools (e. g., Green’s third identity), and obtain the
boundary integral equations(

γext
0 u
γext

1 u

)
=

(
1
2
I +K −V
−D 1

2
I −K ′

)(
γext

0 u
γext

1 u

)
.

Note that there is only a sign-flip in V and D compared to an interior prob-
lem. We see that with the radiation condition above, the treatment of exte-
rior problems is analogous to interior ones. A precise treatment of radiation
conditions can be found in [McLean].

4.6.5 Mixed boundary value problems

Let ΓD and ΓN be disjoint non-trivial parts of Γ such that Γ = ΓD ∪ ΓN .
Given gD on ΓD and gN on ΓN find u with

−∆u = 0 in Ω ,

u = gD on ΓD ,

∂u

∂n
= gN on ΓN .

Translating this classical formulation to a variational framework, we should
clarify in which spaces the traces γint

0 u|ΓN
and γint

1 u|ΓD
have to lie. To this

end we fix an extension ũ ∈ H1(Ω) with u|ΓD
= gD and homogenize the

problem: we wish to find u− ũ =: u0 ∈ H1
D(Ω) such that∫

Ω

∇u0 · ∇v dx =

∫
ΓN

gN v dx−
∫

Ω

∇ũ · ∇v dx ∀v ∈ H1
D(Ω) ,
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ΓΓ
N

Figure 4.1: Illustration of the space H̃1/2(ΓN).

where H1
D(Ω) = {v ∈ H1(Ω) : v|ΓD

= 0}. We find that γint
0 u0, γ

int
0 v ∈ H1/2(Γ)

and they vanish on ΓD. In order to characterize this property we introduce
the space

H̃1/2(ΓN) := C∞
0 (ΓN)

‖·‖
H1/2(Γ) ,

which can easily be shown to be a subspace of H1/2(ΓN). More precisely

H̃1/2(ΓN) contains all functions from H1/2(ΓN) that can be extended by zero
to Γ such that the resulting function is still in H1/2(Γ) (see Figure 4.1). We
set

H−1/2(ΓN) := H̃1/2(ΓN)∗ , H̃−1/2(ΓN) := H1/2(ΓN)∗ ,

and repeat the same definitions replacing ΓN by ΓD. Note that

H̃1/2(ΓN)
6=
⊂ H1/2(ΓN) , H−1/2(ΓN)

6=
⊃ H̃−1/2(ΓN) .

We find that in the homogenized variational formulation above, γint
0 u0,

γint
0 v ∈ H̃1/2(ΓN). Thus we can assume

gN ∈ H−1/2(ΓN) = H̃1/2(ΓN)∗ ,

and replace the integral over ΓN by the corresponding duality product. Fur-
thermore, we construct the following extensions

g̃D ∈ H1/2(Γ) : (g̃D)|ΓD
= gD ,

g̃N ∈ H−1/2(Γ) : 〈g̃N , v〉Γ = 〈gN , v〉ΓN
∀v ∈ H̃1/2(ΓN) ,

and set

u0 := γint
0 u− g̃D ∈ H̃1/2(ΓN) ,

t0 := γint
1 u− g̃N ∈ H̃−1/2(ΓD) .

Then we obtain the following system from Calderón’s equations,(
V −K
K ′ D

)(
t0
u0

)
=

(
−V 1

2
I +K

1
2
I −K ′ −D

)(
g̃N

g̃D

)
.
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This system can be shown to be block-skew symmetric and coercive, i. e.,
Lax-Milgram ensures the existence of a unique solution. Multiplying the last
line by −1, we obtain a block-symmetric and indefinite system, a saddle-
point problem. Such systems are well-treated in the lecture on numerical
methods for continuum mechanics.



Chapter 5

Galerkin BEM

5.1 Abstract projection methods

Let X and Y be reflexive Hilbert spaces and let A : X → Y ∗ be a linear,
bounded, and bijective operator. For f ∈ Y ∗ given we consider the operator
equation

find u ∈ X : Au = f in Y ∗ ,

which is equivalent to the variational formulation

find u ∈ X : 〈Au, v〉 = 〈f, v〉 ∀v ∈ Y .

In order to define a projection method we consider finite dimensional sub-
spaces Xh ⊂ X and Yh ⊂ Y with the following bases,

Xh = span{ϕi}nh
i=1 , Yh = span{ψi}nh

i=1 .

We now restrict the above variational formulation to these subspaces.

Find uh ∈ Xh : 〈Auh, vh〉 = 〈f, vh〉 ∀vh ∈ Yh .

Apparently, the resulting residual f−Auh ∈ Y ∗ is then orthogonal to Yh with
respect to the duality-product. In that sense we have projected the residual
to the complement of Yh. Due to linearity it is sufficient that the variational
equation holds for the basis functions ψi only. Since uh =

∑nh

i=1 uj ϕj for
some coefficients {uj} this yields the system

nh∑
j=1

uj 〈A, ϕj, ψi〉︸ ︷︷ ︸
=:[Ah]ij

= 〈f, ψ〉︸ ︷︷ ︸
=:[f

h
]i

,

59
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which is linear in the coefficients uj. With uh = [uj]
nh
j=1 we get the matrix-

vector form
Ah uh = f

h
.

Here, Xh is called trial space, and Yh the test space. Most of the time,
Y = X and Yh = Xh. Then we speak of a Galerkin method. If Xh and Yh

differ from each other, we speak in general of a Galerkin-Petrov method. If
Y ∗ = X and if we choose ψi = Aϕi we obtain a least-squares method, being
equivalent to minimize ‖Auh − f‖2X for uh ∈ Xh.

The following two examples illustrate Galerkin methods for two of the
boundary integral equations we have discussed before.

Example 5.1 (Dirichlet problem). For a fixed g ∈ H1/2(Γ), consider the
equation

find t ∈ H−1/2(Γ) : V t = (1
2
I +K)g

(X := Y := H−1/2(Γ), A := V , and f := (1
2
I + K)g). If we fix Xh =

span{ϕi}nh
i=1 we obtain the linear system

Vh th = rh ,

with [Vh]ij = 〈ϕj, V ϕi〉 and [rh]i = 〈ϕi, (1
2
I +K)g〉.

Example 5.2 (Neumann problem). For a fixed t ∈ H−1/2(Γ), consider the
equation

D̃ u = (1
2
I −K ′)t

(X := Y := H1/2(Γ), A = D̃, and f := (1
2
I − K ′)t). If we fix Xh =

span{ϕi}nh
i=1 we obtain the linear system

D̃h uh = rh ,

with [D̃h]ij = 〈D̃ ϕj, ϕi〉 and [rh]i = 〈(1
2
I −K ′)t, ϕi〉. Here, D̃ is a suitable

regularization of D, see Section 4.6.3.

The next example draws a connection to the collocation method discussed
in Chapter 3.

Example 5.3 (Collocation method). Suppose that X ⊂ C(Γ) and Y ∗ ⊂
C(Γ), and that δy ∈ Y for arbitrary points y ∈ Γ. Let Xh = span{ϕi}nh

i=1.
For a fixed set of collocation points {yi}nh

i=1 we define the basis for Yh to be

ψi := δyi
.
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The problem of the collocation method is that we need the variables and
expressions under consideration to be continuous. For d = 2 or 3 and Γ ∈ C1

we have the regularity result u ∈ H2(Ω) ⊂ C(Ω) only for suitable boundary
data. Here we see that the collocation method is limited, and indeed only
little theory is known.

In the following we treat Galerkin methods only. There we have the
following important result.

Lemma 5.4 (Céa). Let the operator A : X → X∗ be linear, bounded, and
elliptic and fix f ∈ X∗ and Xh ⊂ X. Let furthermore u ∈ X and uh ∈ Xh be
such that

〈Au, v〉 = 〈f, v〉 ∀v ∈ X ,

〈Auh, vh〉 = 〈f, vh〉 ∀vh ∈ Xh .

Then we have the estimates

‖uh‖X ≤
1

cA
‖f‖X∗ ,

and

‖u− uh‖X ≤
cA
cA

inf
vh∈Xh

‖u− vh‖X .

The proof is based on the result of the Lax-Milgram lemma and the
Galerkin orthogonality

〈A(u− uh), vh〉 = 0 ∀vh ∈ Vh ,

see, e. g., the lecture on numerical methods for partial differential equations.

5.2 Trial spaces

Suppose first that Ω is polygonal (polyhedral if d = 3), i. e.,

Γ =
J⋃

j=1

Γj ,

where Γj are line segments (plane polygons if d = 3).
Consider a family {Γh}h∈Θ of regular meshes

Γh =

nel
h⋃

i=1

τh,i ,
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where the elements τh,i are line segments (plane triangles if d = 3). Since
we will only treat one mesh at the time, we simply write τi := τh,i. Let

{xj}
nnd

h
j=1 be the nodes of the mesh. Note that due to our assumption that Ω

is polygonal (polyhedral) we have Γh = Γ.
For each element we define the local mesh size

hi := |τi|1/(d−1) , and set h :=
nel

h
max
i=1

,

where |τi| denotes the length (area) of the element. We assume shape regu-
larity (i. e., for d = 3 the radius ρi of the largest inscribed circle in τi fulfills
ρi > chi with a uniform constant c > 0) and a quasi-uniform mesh:

hi ≥ c h ∀i = 1, . . . , nel
h .

Now we can define the basis functions

ϕ0
i := χτi

for i = 1, . . . , nel
h ,

ϕ1
j :=


1 if x = xj

0 if x = xk, k 6= j
continuous p.w. affine linear elsewhere

 for j = 1, . . . , nnd
h ,

where χτi
is the characteristic function, and we define the spaces

S0
h(Γ) := span{ϕ0

i }
nel

h
i=1 (p.w. constant, discontinuous),

S1
h(Γ) := span{ϕ1

j}
nnd

h
j=1 (p.w. affine linear, continuous).

Like in the FEM, the basis functions can be constructed via reference ele-
ments. Via an affine linear transformation, each element τi can be mapped
to the reference element τ̂ (the interval (0, 1) for d = 2, and the well-known
reference triangle for d = 3), cf. Figure 5.1. The shape functions on the
reference element read{

ϕ̂1
0(ξ) = 1− ξ

ϕ̂1
1(ξ) = ξ

} 
ϕ̂1

0(ξ) = 1− ξ1 − ξ2
ϕ̂1

1(ξ) = ξ1
ϕ̂1

2(ξ) = ξ2


for the interval and the triangle, respectively. We remark that using suit-
able transformations the spaces S0

h(Γ), S1
h(Γ) can also be defined for curved

boundaries.

In the following we briefly discuss the approximation properties of these
spaces; for more details see, e g., [Steinbach].
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Figure 5.1: Reference elements, sketches of affine linear basis functions.

Lemma 5.5 (approximation by S0
h(Γ)). Let σ ∈ [−1, 0], s ∈ [σ, 1] and

t ∈ Hs(Γ). Then

inf
wh∈S0

h(Γ)
‖t− wh‖Hσ(Γ) ≤ c hs−σ ‖t‖Hs(Γ) ,

where the norm on the right hand side can be replaced by the seminorm |t|Hs(Γ)

if s > 0. The same holds if replace Γ by a part Γ̃ ⊂ Γ.

Lemma 5.6 (approximation by S1
h(Γ)). Let σ ∈ [0, 1], s ∈ [σ, 2] and u ∈

Hs(Γ). Then

inf
vh∈S1

h(Γ)
‖u− vh‖Hσ(Γ) ≤ c hs−σ ‖u‖Hs(Γ) ,

where the norm on the right hand side can be replaced by the seminorm
|u|Hs(Γ) if s > 0.

5.3 Error estimates for the Dirichlet BVP

First, we discuss the error in the normal derivative. Therefor we need to
define

Hs
pw(Γ) :=

{
v ∈ L2(Γ) : v|Γj

∈ Hs(Γj) ∀j = 1, . . . , J
}
,

where Γj are the smooth edges (faces) of the polygon (polyhedron) Γ, equipped
with the norm

‖t‖Hs
pw(Γ) :=

( J∑
j=1

‖t‖2Hs(Γj)

)1/2

.

Analogously we can define the seminorm |t|Hs
pw(Γ). We need this because the

normal vector is discontinuous and so is the normal derivative t = γint
1 u.
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Let now t ∈ H−1/2(Γ) and th ∈ S0
h(Γ) fulfill

〈w, V t〉 = 〈w, (1
2
I +K)g〉 ∀w ∈ H−1/2(Γ) ,

〈wh, V th〉 = 〈wh, (1
2
I +K)g〉 ∀wh ∈ S0

h(Γ) .
(5.1)

Then Céa’s lemma implies that

‖t− th‖H−1/2(Γ) ≤ c inf
wh∈S0

h(Γ)
‖t− wh‖H−1/2(Γ) .

From Lemma 5.5 we can conclude that

‖t− th‖H−1/2(Γ) ≤ c hs+
1
2 ‖t‖Hs

pw
for s ∈ [−1

2
, 1] , (5.2)

of course assumed that the normal derivative of the solution fulfills this reg-
ularity. In the optimal case, if t ∈ H1

pw(Γ), we obtain the convergence rate

O(h3/2) as h→ 0.

Remark 5.7. We have the following regularity result for the Dirichlet prob-
lem due to [Dauge]. Let Ω be convex and let ω denote the largest angle
between the parts Γi. Then

g ∈ H3/2+σ(Γ) =⇒ u ∈ H2+σ(Ω) for σ ∈
(
− 1

2
, min

{
3
2
, π

ω
− 1
})
.

We see that if ω < 2
3
π and g ∈ H2(Γ), then u ∈ H5/2(Ω) which implies

that ∇u ∈ [H3/2(Ω)]d. It can be shown that γ0 : H3/2(Ω) → H1
pw(Γ) for

polygonal (polyhedral) Lipschitz domains. Thus, we can expect that t ∈
γint

1 u = (γ0∇u) · n ∈ Hs
pw(Γ) for s ∈ [−1

2
, 1], and we obtain the optimal

convergence rate O(h3/2) for the assumptions on g and Γ above.

Finally, we discuss the error in the interior of Ω. Let t, th solve (5.1) and
let u ∈ H1(Ω) be harmonic such that γint

0 u = g and γint
1 u = t, i. e.,

u = Ṽ t− W̃ g .

Due to Lemma 4.22 we know that u|Ω ∈ C∞(Ω) (note that u 6∈ C∞(Ω), but
only u ∈ H1(Ω)). We set

uh := Ṽ th − W̃ g ,

i. e., the harmonic function such that γint
0 uh = g and γint

1 uh = th. Also
uh|Ω ∈ C∞(Ω). Hence, for a point x̃ ∈ Ω, we can investigate the error

|u(x̃)− uh(x̃)| = |Ṽ (t− th)(x̃)| .
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Recall that for smooth functions we have

Ṽ (t− th)(x̃) =

∫
Γ

U∗(x̃, y)
[
t(y)− th(y)

]
dsy .

Assume now that t, th ∈ Hσ(Γ) for some σ (e. g., σ = −1
2
). Then, since

U∗(x̃, ·) ∈ C∞(Γ) ⊂ H−σ(Γ), we get by duality that

|u(x̃)− uh(x̃)| ≤ ‖U∗(x̃, ·)‖H−σ(Γ) ‖t− th‖Hσ(Γ) .

Due to a result by Aubin and Nitsche (see e. g., [Steinbach]), the statement
of Lemma 5.5 holds also for σ ∈ [−2, −1

2
], s ∈ [−1

2
, 1]. Thus, we can choose

σ = −2 and obtain

|u(x̃)− uh(x̃)| ≤ c h2+s ‖U∗(x̃, ·)‖H2(Γ) ‖t‖Hs
pw(Γ) ,

where again ‖t‖Hs
pw(Γ) may be replaced by the corresponding seminorm if

s > 0. This means, for our Lipschitz polygon (polyhedron) we get the optimal
convergence rate O(h3).

Remark 5.8. We can also give a bound for the H1-error using variational
techniques (see, e. g., [Steinbach]). Let uh be defined as above, then

‖u− uh‖H1(Ω) ≤ c ‖t− th‖H−1/2(Γ) ≤ c hs+
1
2 ‖t‖Hs

pw(Γ)

for s ∈ [−1
2
, 1]. Thus, the optimal convergence rate is O(h3/2). This is in

contrast to the FEM where we obtain only a rate of O(h) for linear elements!

5.4 Computation of matrix entries

In principle the computation of the matrix entries

[Vh]ij = 〈ϕ0
j , V ϕ

0
i 〉Γ for i, j = 1, . . . , nel

h

=

∫
τi

∫
τj

U∗(x, y) dsx dsy

is very similar to what we have seen in Chapter 3. The double integrals
can be computed analytically where [Vh]ij involves a weakly singular sur-
face integral if i = j or if τi, τj touch each other. For details we refer
to [Rjasanow/Steinbach] and [Sauter/Schwab]. The following boundary ele-
ment matrices are also often needed:

[Kh]ik = 〈ϕ0
i , K ϕ1

k〉Γ
[Mh]ik = 〈ϕ0

i , ϕ
1
k〉Γ

}
for i = 1, . . . , nel

h , k = 1, . . . , nnd
h .
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We can make use of these in our Dirichlet problem when we represent the
Dirichlet data by a continuous piecewise affine linear function. The matrix
Mh is a mass matrix; note that it does not equal the identity matrix. How-
ever, in contrast to the other boundary element matrices, the mass matrix
Mh is sparse. The operator 1

2
I+K is then obviously discretized by 1

2
Mh+Kh.

For other boundary value problems, we need the matrix

[Dh]k` = 〈Dϕ1
` , ϕ

1
k〉Γ for k, ` = 1, . . . , nnd

h

= 〈curlΓ ϕ
1
`︸ ︷︷ ︸

∈S0
h(Γ)

, V curlΓ ϕ
1
k︸ ︷︷ ︸

∈S0
h(Γ)

〉Γ ,

where we have used Lemmas 4.29 and 4.30; the fact that curlΓ ϕ
1
k ∈ S0

h(Γ) is
easily seen. Let wh ∈ S1

h(Γ) with the coefficient vector wh ∈ Rnel
h (we write

wh ↔ wh), and let vh ↔ vh ∈ S1
h(Γ). Then it turns out that there exists a

sparse matrix Ch such that

wh = curlΓ vh ⇐⇒ wh = Ch vh .

Thus,
Dh = C>

h VhCh .

The adjoint of K ′ corresponds of course to K>
h . We see that we basically need

to compute entries of Vh and Kh in order to discretize the BVPs discussed
in Section 4.6.

Exercise. Give an explicit description of the matrix Ch.

5.5 The conditioning of Vh

In this section we briefly investigate the spectral condition number of Vh.
The condition number of a typical FEM stiffness matrix is O(h−2) as h→ 0.
The next lemma shows that κ(Vh) = O(h−1) only.

Lemma 5.9. Let wh ∈ S0
h(Γ) with wh ↔ wh ∈ Rnel

h . Then there exist
constants c1, c2 > 0 such that

c1 h
d ‖wh‖2`2 ≤ (Vhwh, wh)`2 ≤ c2 h

d−1 ‖wh‖2`2 .

Hence the spectral condition number of Vh fulfills

κ(Vh) = O(h−1) .
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Proof. Surprisingly, the following proof is not based on the actual entries of
Vh. Instead we use boundedness and ellipticity of the single layer potential
operator V and properties of the spaces H−1/2(Γ) and S0

h(Γ). First, we
observe that

(Vhwh, wh) = 〈wh, V wh〉 .
Upper bound: Using the fact that

‖wh‖H−1/2(Γ) = sup
v∈H1/2(Γ)

〈wh, v〉
‖v‖H1/2(Γ)

≤ sup
v∈H1/2(Γ)

(wh, v)L2(Γ)

‖v‖L2(Γ)

≤ sup
v∈L2(Γ)

(wh, v)L2(Γ)

‖v‖L2(Γ)

≤ ‖wh‖L2(Γ)

and the boundedness of V we obtain

〈wh, V wh〉 ≤ c ‖wh‖2H−1/2(Γ) ≤ c ‖wh‖2L2(Γ)

= c

nel
h∑

i=1

w2
i |τi|︸︷︷︸

=hd−1
i ≤hd−1

≤ c hd−1 ‖wh‖2`2 ,

where in the last steps we have used the definitions of hi and h.

Lower bound: Matters are more complicated here. In fact we need some
tools.

(i) We define the space of local bubble functions

SB
h (Γ) := span{ϕB

i }
nel

h
i=1 ⊂ H1/2(Γ)

with the basis functions ϕB
i defined via the reference element and

ϕB(ξ) :=

{
ξ(1− ξ) if d = 2 ,
ξ1 ξ2 (1− ξ1 − ξ2) if d = 3 .

(ii) We have the inverse inequality

‖vh‖H1/2(Γ) ≤ c h−1/2 ‖vh‖L2(Γ) ∀vh ∈ SB
h (Γ) .

This inequality can e. g. be obtained from an interpolation of corre-
sponding estimates of the L2- and the H1-norm.

(iii) We define the L2-projection QB
h : L2(Γ)→ SB

h (Γ) by the relation∫
τi

(QB
hw) dsx =

∫
τi

w dsx ∀i = 1, . . . , nel
h for w ∈ L2(Γ) .
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(iv) We have the stability estimate

‖QB
hw‖L2(Γ) ≤

√
2 ‖w‖L2(Γ) ∀w ∈ L2(Γ) ,

cf. [Steinbach].

With the help of the above tools we can conclude that

‖wh‖H−1/2(Γ) = sup
v∈H1/2(Γ)

〈wh, v〉
‖v‖H1/2(Γ)

≥ 〈wh, Q
B
hwh〉

‖QB
hwh‖H1/2(Γ)

(iii)
=

∫
Γ
(wh)

2 ds

‖QB
hwh‖H−1/2(Γ)

(ii),(iv)

≥ c̃ h1/2
‖wh‖2L2(Γ)

‖wh‖L2(Γ)

where in the penultimate step we have used that wh is piecewise constant
(thus wh ∈ L2(Γ)), and so

〈wh, Q
B
hwh〉 =

∫
Γ

wh (QB
hwh) ds =

nel
h∑

i=1

wh|τi

∫
τi

QB
hwh ds︸ ︷︷ ︸

=
R

τi
wh ds

=

∫
Γ

(wh)
2 ds .

This concludes the proof.



Chapter 6

Fast BEM

6.1 Motivation

We have seen that the crucial problem is the storage of the matrices Vh, Kh,
etc. For a quasi-uniform mesh we need O(h2(d−1)) memory where we have
only O(hd−1) unknowns. The basic idea of fast boundary element methods
is to approximate the matrices with less storage amount. Here we give a
motivation why this can be possible. Let Γ be the boundary of a three-
dimensional domain, let τi, τk, τ`, etc. be elements, where τi is far away from
τk and all the remaining elements touch τk, see the figure below.

Γ

τ

τ

y x
i

l

k
τfar

With our definition of Vh we have

[Vh]ik =

∫
τi

∫
τk

1

4π

1

|x− y|
dsx dsy .

Since 1/|x−y| decays very fast if |x−y| becomes large, we can write |x−y| ≈
|x∗i − x∗k| where x∗i and x∗k are the centers of τi and τk, respectively. Thus the
double integral is approximated by a constant. For an element τ` touching
τk, we have

[Vh]i` ≈ [Vh]ik

69



CHAPTER 6. FAST BEM 70

because the difference |x∗i−x∗k| ≈ |x∗i−x∗` |. In the figure above we can approx-
imate six double integrals (six entries of the matrix) by one constant, which
leads to a reduced storage amount. Using some tricks one can generalize this
concept.

Among many fast BEM approaches are

• wavelets (here one constructs a special basis which leads to a sparse
representation),

• the fast multipole method (using taylor expansion one can realize at
least a fast application of the matrices),

• hierarchical matrices and data-sparse approximation

For more details see e. g., [Steinbach] and [Bebendorf]. We will follow the
last approach. There the main tricks are

• low-rank matrices, and

• hierarchical clustering.

The hierarchical matrices were introduced by Hackbusch and Khoromskij.
The data-sparse approximation that we will discuss is named adaptive cross
approximation (ACA) and was introduced by Bebendorf and Rjasanow. Other
techniques and references can be found in [Bebendorf], [Steinbach], and also
online at www.hlib.org.

6.2 Low-rank matrices

For a matrix A ∈ Rm×n we define

range(A) := {Ay : y ∈ Rn} , rank(A) := dim(range(A)) .

Lemma 6.1. (i) rank(A) ≤ min(m, n) ∀A ∈ Rm×n

(ii) rank(AB) ≤ min(rank(A), rank(B)) ∀A ∈ Rm×p , B ∈ Rp×n

(iii) rank(A+B) ≤ rank(A) + rank(B) ∀A, B ∈ Rm×n

Definition 6.2. We define the set of matrices with rank at most k (in short:
rank-k matrices),

Rm×n
k := {A ∈ Rm×n : rank(A) ≤ k} .
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Attention: Rm×n
k does not form a linear space because addition of two

rank-k matrices can increase the rank beyond k.

Lemma 6.3.

A ∈ Rm×n
k ⇐⇒ ∃U ∈ Rm×k , V ∈ Rn×k : A = U V >

The above representation U V > of a rank-k matrix is called outer product
form. Note that if we have such a representation, the matrix-vector multi-
plication

Ay = U (V >y)︸ ︷︷ ︸
∈Rk

can be computed in O(k(m+ n)) operations. Also, the storage amount of U
and V is only k(m+ n).

Definition 6.4. A matrix A ∈ Rm×n
k is said to have low rank if

k(m+ n) < mn .

Obviously we should represent (in particular store) low-rank matrices in
outer product form.

Remark 6.5. Two low-rank matrices can be multiplied and added in low
complexity. Also the singular value decomposition (SVD)

A = U ΣV >

(with U ∈ Rm×k, V ∈ Rn×k orthogonal and Σ ∈ Rk×k diagonal) of a low-rank
matrix can be computed cheaply. Using that one, for A, B ∈ Rm×n

k , the best
approximation C of the sum A+B with respect to the Frobenious norm, i. e,

‖A+B − C‖F → min
C∈Rm×n

k

,

can be computed also efficiently. We refer to this approximated addition by
rounded addition. It is a similar concept to the rounded addition of fixed
floating point operations in processors, but here we do not cut the precision
of a number but the rank of a matrix. The computational complexity of the
rounded addition is O(k2(m+ n)).
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6.3 Degenerate kernels

Unfortunately, boundary element matrices cannot be approximated by low-
rank matrices (but as will turn out certain matrix blocks can). They would,
if the kernel of the underlying integral operator had a different form.

Definition 6.6. Let D1, D2 be subsets of Rd or a manifold Γ. An integral
kernel κ : D1 ×D2 → R is called degenerate if there exists a constant k ∈ N
and functions u` : D1 → R, v` : D2 → R for ` = 1, . . . , k such that

κ(x, y) =
k∑

`=1

u`(x) v`(y) ∀x ∈ D1, y ∈ D2 .

The number k is called degree of degeneracy.

Suppose we have a matrix A defined by

Aij =

∫
Γ

∫
Γ

κ(x, y)ψj(y)ϕi(x) dsx dsy

and suppose we have index sets I and J and submanifolds D1, D2 ⊂ Γ with

supp(ϕi) ⊂ D1 ∀i ∈ I , supp(ψj) ⊂ D2 ∀j ∈ J .

If κ (restricted to D1 ×D2) is degenerate of degree k then

Aij =
k∑

`=1

∫
D1

u`(x)ϕi(x) dsx

∫
D1

v`(y)ψj(y) dsy ∀i ∈ I, j ∈ J ,

and so the block [Aij]i∈I, j∈J has rank k.
The kernels appearing in our boundary integral operators are not degen-

erate. However, we can try to approximate them by degenerate kernels.

6.4 Asymptotically smooth kernels

Definition 6.7. An integral kernel κ : D1×Rd → R with κ(x, ·) ∈ C∞(Rd \
{x}) for all x ∈ D1 is called asymptotically smooth in D1 with respect to y if
there exist constants γ, c > 0 such that for all x ∈ D1 we have∣∣∂α

y κ(x, y)
∣∣ ≤ c |α|! γ|α| |κ(x, y)|

|x− y||α|
∀multi-indices α ∀y ∈ Rd \ {x} .
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Remark 6.8. The kernels U∗(x, y) and ∂
∂nx

U∗(x, y) appearing in V and K
can be shown to be asymptotically smooth.

We want to exploit this smoothness for a Taylor expansion. However, in
the vicinty of the singulary we cannot expect good convergence. Therefore
we will assume that x and y are sufficiently far away from each other.

Definition 6.9. For sets D1, D2 and x ∈ D1 we define the distances

dist(x, D2) := inf
y∈D2

|x− y| , dist(D1, D2) := inf
x∈D1, y∈D2

|x− y| .

Assume now that a kernel κ : D1 × D2 → R is analytic with respect to
the second argument (y) and assume at least that dist(D1, D2) > 0. Then
by Taylor’s expansion we have

κ(x, y) =
∑
|α|<p

1

α!
∂α

y κ(x, ξD2) (y − ξD2)
α

︸ ︷︷ ︸
=:Tp[κ](x, y)

+Rp(x, y) ,

where

Rp(x, y) =
∑
|α|≥p

1

α!
∂α

y κ(x, ξD2) (y − ξD2)
α

and ξD2 is the Chebyshev center of D2, defined as the center of the ball of
minimum radius that contains D2. We denote the minimum radius by ρD2 ,
see below.

D
2

ξD
2

D
2

ρ

The next lemma clarifies how much error we make when cutting the Taylor
series.

Lemma 6.10. Let κ : D1×D2 → R an integral kernel which is analytic with
respect to y and let κ : D1×Rd → R be asymptotically smooth. Furthermore,
suppose that the condition

η dist(ξD1 , D2) ≥ ρD2

holds for some η > 0 with 2 γ
√
d η < 1. Then∣∣κ(x, y)− Tp[κ](x, y)
∣∣ ≤ (2 γ

√
d η)p

1− 2 γ
√
d η
|κ(x, ξD2)| .
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The lemma states that if D1 is sufficiently far away from D2, we have
exponential convergence of the Taylor series as p → ∞. I.e. there is hope
that we can cut the series for a rather small p (which leads to a low rank
representation) and to make only a small error.

Usually, we consider integral kernels which are analytic and asymptot-
ically smooth with respect to both variables x and y. Then we use the
symmetric condition

min(ρD1 , ρD2) ≤ η dist(D1, D2) (6.1)

instead of the condition in Lemma 6.10.

6.5 Admissible blocks

For index sets I = {1, . . . , n} and J = {1, . . . ,m} we denote by t ⊂ I, s ⊂ J
(index) blocks. Note that the entries need not be contiguous (a block can
also look like {2, 5, 7}). For A ∈ Rn×m = RI×J we define

At×s := [Aij]i∈t, k∈s ,

i. e., the restriction to the block t× s. Finally, we denote by |t| the number
of indices in the block t.

Definition 6.11. Let At×s correspond to∫
D1

∫
D2

κ(x, y)ψj(y)ϕi(x) dsx dsy for i ∈ t, j ∈ s ,

with
⋃

i∈t suppϕi ⊂ D1 and
⋃

j∈s suppψj ⊂ D2. Then we call the block t× s
admissible if (6.1) is fulfilled.

Lemma 6.12. For an admissible block t× s and κ : D1 ×D2 → R analytic
and asymptotically smooth in both variables, the matrix block At×s (defined as

above) can be approximated by a low-rank matrix Ãt×s ∈ Rt×s
k . Let ε denote

the approximation error (with respect to ‖ · ‖F ), then

k ≤ pd ' | log ε|d ,

where p denotes the order of the Taylor expansion.

The ultimate goal is to find a partition of I × J into blocks where we can
use the Taylor expansion and the low-rank approximation.
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Definition 6.13. A set P ⊂ P(I × J) (where P(·) denotes the power set) is
called partition of I × J if

I × J =
⋃
b∈P

b , and b1 6= b2 ∈ P =⇒ b1 ∩ b2 = ∅ .

A block b = t × s of a partition is called small if min(|t|, |s|) < n0 where
n0 is a positive parameter. Finally, we call a partition P admissible if each
block b ∈ P is either admissible or small.

In the next two sections we construct admissible partitions of I×J . There
we restrict ourselves to a special class of partitions which are constructed by
organizing the index sets I and J separately in a hierarchical tree structure.

6.6 Cluster trees

Definition 6.14. (i) Let T = (V , E) be a tree (i. e., a simple, directed,
and connected graph with no cycles). Here V and E are the set of
vertices and edges of the graph, respectively. For a vertex t ∈ V we
define the set of sons

S(t) := {t′ ∈ V : (t, t′) ∈ E} .

The root of the tree is a unique vertex which is not a son of any other
vertex. We call a vertex a leaf if it has no sons. The set of leaves is

L(T ) := {t ∈ V : S(t) = ∅} .

We define the level of a vertex t: if t is the root, level(t) := 0, for all
other vertices t, level(t) is the minimal number of edges connecting t
and the root. Finally, the depth of the tree is then defined as

depth(T ) := max
t∈V

level(t) + 1 .

(ii) A tree TI = (V , E) is called cluster tree of a finite index set I if the
following conditions hold:

(a) I is the root of TI ,

(b) for each vertex t ∈ V we have that t is a non-empty subset of I,
its sons are pairwise disjoint, and t =

⋃
t′∈S(t) t

′,

(c) all vertices which are not leaves have at least two sons.
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{1, 2, 3, 4, 5, 6, 7, 8} ←− root

Figure 6.1: Example of a (binary) cluster tree.

Notation: For cluster trees we identify the tree with its vertices and
write t ∈ TI instead of t ∈ V .

(iii) We call a cluster tree TI balanced if

R := min
t∈TI\L(TI)

min
{ |t1|
|t2|

: t1, t2 ∈ S(t)}

is bounded from below by a positive constant, independently of |I|.

Figure 6.1 shows an example of a cluster tree for the set I = {1, . . . , 8}.

Lemma 6.15. Let TI be a balanced cluster tree. Then depth(TI) = O(log |I|).
The storage complexity of TI is then O(|I| log |I|).

For an index set I which represents a collection of elements {τi}i∈I , we
want to generate a cluster tree TI which will eventually lead to an admissible
partition of I × I (or I × J for another cluster tree TJ). Here, we use the
principal component analysis (PCA). To this end we associate to each element
τi a point yi (e. g., its center of gravity).

Definition 6.16. Let t ⊂ I be a block.

• We define the centroid mt :=
∑

i∈t
|τi|P

j∈t |τj | yi

• A vector wt ∈ Rd, |wt| = 1 where the maximum

max
v∈Rd, |v|=1

∑
i∈t

|v · (yi −mt)|2

is attained is called main direction of t.
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τ

yi

i

m
t

w
t

hyperplane

Figure 6.2: Example of block subdivision by the principal component analysis
(d = 2).

• We define the covariance matrix Ct :=
∑

i∈t(yi−mt) (yi−mt)
> ∈ Rd×d.

Obviously, the computation of mt can be done in linear time. But how to
get the main direction? It is rather easy to see that wt is a main direction of
t if and only if |wt| = 1 and wt is an eigenvector to the maximal eigenvalue
of Ct. Thus, in order to compute wt we can form the covariance matrix Ct

(in linear time) and compute its eigensystem.
Having mt and wt at our disposal we now subdivide the block t (which

represents a collection of elements {τi}i∈t) using the hyperplane through mt

with normal wt. We define the sons of t in the cluster tree by

S(t) := {t1, t2}
t1 := {i ∈ t : wt · (y1 −mt) > 0}
t2 := t \ t1 ,

see also Figure 6.2. We apply this recursively to the set I and stop if a block
contains less than nmin elements, where nmin is a fixed parameter. This way
we get a cluster tree which we call geometrically balanced. Recall that we
assume a shape-regular and quasi-uniform mesh. Then it can be shown that
the cluster tree is also balanced in the sense of Definition 6.14(iii).

Lemma 6.17. The construction of a cluster tree TI for a collection of ele-
ments {τi}i∈I using the principal component analysis as described above re-
quires only O(|I| log |I|) operations.

6.7 Block cluster trees

We now use the cluster trees from the last section to construct an admissible
partition for I × J . Let TI and TJ cluster trees for I and J , respectively, as
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constructed above. We define the block cluster tree TI×J by specifying the
root to be I × J and defining for each block t× s the sons,

SI×J(t× s) :=


∅ if t× s is admissible

or SI(t) = ∅ or SJ(s) = ∅ ,
SI(t)× SJ(s) else.

Above, SI×J indicates that the sons are to be understood with respect to
the tree TI×J , and SI with respect to the tree TI etc. Obviously, by this
construction,

depth(TI×J) ≤ min{depth(TI), depth(TJ)} .

If TI and TJ are binary trees (each vertex has two sons or is a leaf), TI×J is
a quadtree (each vertex has four sons or is a leaf).

Most importantly, by this construction the partition generated by the
leaves of the block cluster tree TI×J is admissible. This is because a leaf
t × s is either admissible, or we have that t or s is itself a leaf of TI or TJ ,
respectively, which implies that min(|t|, |s|) ≤ nmin, and so the block is small
if we choose nmin accordingly.

A measure for the complexity of a block cluster tree is the so-called spar-
sity constant. Here, we introduce this concept only briefly, as we will just
use it once on page 80. For a block t ∈ TI we define

crowsp (TI×J , t) :=
∣∣{s ⊂ J : t× s ∈ TI×J

}∣∣ ,
i. e. the number of blocks t × s in the block cluster tree TI×J with t being
fixed. Similarly, for s ∈ TJ we define

ccolsp (TI×J , s) :=
∣∣{t ⊂ I : t× s ∈ TI×J

}∣∣ .
Finally, we define the sparsity constant of TI×J by

csp(TI×J) := max
{

max
t∈TI

crowsp (TI×J , t) , max
s∈TJ

ccolsp (TI×J , s)
}
.

One can show that if TI and TJ are geometrically balanced (e. g. constructed
by the PCA) and the original mesh is shape-regular and quasi-uniform, the
sparsity constant is bounded.

Lemma 6.18. Let TI and TJ be balanced cluster trees. Then the construction
of the block cluster tree TI×J as described above requires only O(|I| log |I|+
|J | log |J |) operations.
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Figure 6.3: Example of a typical H-matrix. Approximation of the single
layer potential on a half-sphere discretized by 932 triangles. Green blocks:
low-rank blocks (black numbers: local rank used by ACA). Red blocks: dense
blocks.

6.8 The set of Hierarchical Matrices

We will now work with the partition generated by our block cluster tree and
define a special kind of matrix related to it.

Definition 6.19. The set of hierarchichal matrices on the block cluster tree
TI×J with an admissible partition P = L(TI×J) and block-wise rank k is
defined as

H(TI×J , k) :=
{
A ∈ RI×J : rank(At×s) ≤ k ∀ admissible blocks t×s ∈ P

}
.

In short we call this set the set of H-matrices.

An H-matrix is stored as follows:

• for an admissible block t× s we use the outer product representation;
the storage amount is then k(|t|+ |s|),

• for all other blocks we use the conventional entry-wise storate; the
storage amount is then bounded by nmin(|t|+ |s|).

A typical H-matrix is shown in Figure 6.3 (for the ACA see the next section).
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We now sketch how to prove that the total storage amount Nst(A) of an
H-matrix A ∈ H(TI×J , k) fulfills

Nst = O
(
max(k, nmin) (|I| log |I|+ |J | log |J |)

)
.

In order to get the storage amount we have to sum up the individual storage
amounts of each leave. In fact we will bound this by a sum over all blocks in
the tree and use the sparsity constant (see page 78):

Nst ≤
∑

t×s∈L(TI×J )

max(k, nmin) (|t|+ |s|) ≤
∑

t×s∈TI×J

max(k, nmin) (|t|+ |s|)

≤ max(k, nmin)
{∑

t∈TI

∑
s∈TJ :t×s∈TI×J

|t|+
∑
s∈TJ

∑
t∈TI :t×s∈TI×J

|s|
}

≤ csp(TI×J) max(k, nmin)
{∑

t∈TI

|t|+
∑
s∈TJ

|s|
}

≤ C̃ max(k, nmin) (|I| log |I|+ |J | log |J |)
)
.

Many algorithms in the context of H-matrices perform the same kind of
operations blockwise. The above technique can be used to estimate the total
complexity of these algorithms.

Remark 6.20. H-matrices generalize sparse matrices. One can e. g. show
that a FEM stiffness matrix can be stored as an H-matrix even with O(n)
storage requirements. In constrast to sparse matrices, we call H-matrices
data-sparse.

Lemma 6.21. The computational complexity of the H-matrix by vector mul-
tiplication is O

(
max{k, nmin}

(
|I| log |I|+ |J | log |J |

))
.

This means that we can not only use H-matrices to represent approxi-
mations of BEM matrices, but also for iterative solver, as for instance CG,
where only the application of the matrix to a vector is required. To get
quasi-optimal solvers one needs of course preconditioners, and one can in
fact generalize the known multi-level preconditioners for FEM (such as BPX
type preconditioners) also for this purpose.

However, we will not discuss that issue, but instead point out that a
whole H-arithmetic is available, similar to the floating point arithmetic in
processors. E. g. we can add two H-matrices which are defined on the same
block cluster tree by using conventional addition in the dense blocks and
rounded addition in the low-rank blocks. This way, we obtain again an H-
matrix which is an approximation of the exact sum. Multiplication is rather
straigtforward and can be based on the multiplication and rounded addition
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of low-rank matrices. With the following idea one can even approximate the
inverse of an H-matrix by an H-matrix. Consider a block t split into two
sub-blocks t1 and t2 and suppose that

Att =

(
At1t1 At1t2

At2t1 At2t2

)
.

Then by block-elimination, we have

A−1
tt =

(
A−1

t1t1 + A−1
t1t1At1t2S

−1At2t1A
−1
t1t1 −A−1

t1t1At1t2S
−1

−S−1At2t1A
−1
t1t1 S−1

)
,

with the Schur complement S := At2t2 − At2t1A
−1
t1t1At1t2 . Using rounded

addition, multiplication and recursive H-inverse approximations for all the
involved operations, one reaches some point where blocks are small and where
one can use and form the conventional inverses exactly. With the same idea
one can derive an H-LU decomposition.

The following lemma summarizes the computational complexities.

Lemma 6.22. 1. Rounded addition of two H-matrices requires

O(|I| log |I|+ |J | log |J |)

operations.

2. For I = J , rounded multiplication of two H-matrices requires

O(k2 |I| log |I|+ k3 |I|)

operations.

3. For I = J , the H-inverse of an H-matrix can be formed in

O(k2 |I| log |I|+ k3 |I|)

operations.

4. For I = J , the H-LU decomposition of an H-matrix can be computed
in

O(k2 |I| log2 |I|)

operations. Once the decomposition is computed, solving can be done
by forward-backward substitution.
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6.9 The Adaptive Cross Approximation (ACA)

Prescribing a maximal rank and using the Taylor expansion, on could ap-
proximate our BEM matrices by suitable H-matrices. However, (i) an error
control is hard to be achieved, and (ii) we have to write new code for the
integrals due to the Taylor expansion. In this final section we describe an
algorithm where one can reuse existing code and where one has error control.

In order to introduce this technique we formally run the following algo-
rithm for a matrix A ∈ Rm×n.

R0 := A

For ` = 0, 1, . . .

Find a non-zero pivot-element (i`, j`)

R`+1 := R` −
1

[R`]i`j`

(R`)1:m,j`
(R`)i`,1:n

Until ?

Here, (R`)1:m,j`
denotes the j`-th column and (R`)i`,1:n the i`-th row of R`.

Example 6.23.

R0 =


0.431 0.345 0.582 0.417 0.455
0.491 0.396 0.674 0.449 0.427
0.446 0.358 0.583 0.413 0.441
0.380 0.328 0.557 0.372 0.349
0.412 0.340 0.516 0.375 0.370


i1=1

j1=3
→ 1

0.582


0.582
0.674
0.583
0.557
0.516




0.431
0.354
0.582
0.417
0.455


>

R1 =


0 0 0 0 0

−0.008 −0.014 0 −0.033 −0.100
0.014 0.003 0 −0.004 −0.014
−0.032 −0.011 0 −0.026 −0.087
0.029 0.025 0 0.005 −0.034


i2=2

j2=5
→ 1

−0.1


0

−0.100
−0.014
−0.087
−0.034



−0.008
−0.014

0
−0.033
−0.100


>

R2 =


0 0 0 0 0
0 0 0 0 0

0.016 0.005 0 0.000 0
−0.020 0.001 0 0.002 0
0.032 0.030 0 0.017 0


i3=3

j3=1
→ 1

0.016


0
0

0.016
−0.020
0.032




0.016
0.005

0
0.000

0


>

In the (only illustrative) example we see that we formally subtract a
“cross” build by the row and column we have chosen. Also, the absolute
values of the remaining matrix entries get smaller and smaller.

Suppose that we stop the iteration after k steps, we have

A = Sk +Rk , with Sk =
k∑

`=1

u` v
>
` .
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The matrix Sk (which is naturally provided in outer-product representation)
will be used as an approximation. Obviously, for the computation of Sk we
only need to know some matrix entries on demand, i. e., we can reuse existing
code.

The remaining two questions are how to chose the pivot elements and
when to stop. We will only answer partially them. There exist algorithms to
choose the right pivot elements such that when we use the stopping criterion

|u`| |v`| ≤
ε (1− η)

1 + ε
‖Sk‖F

for a prescribed tolerance ε and the parameter η from the admissibility con-
dition, we get the guaranteed error bound

‖A− Sk‖F ≤ ε ‖A‖F .

The total computational complexity of the approximation is

O(n log n | log ε|2d)

with n = |I| ∼ |J | for building the approximation. The storage amount and
the complexity of the matrix-vector multiplication is

O(n log n | log ε|d) .

The ACA can also used for preconditioning (by choosing ε large, e. g., 0.1).
The software package AHMED (developed by Mario Bebendorf) implements
H-matrices and ACA. H-matrices and alternative approximation techniques
can be found in the package Hlib, see www.hlib.org.
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