ÜBUNGEN ZU

NUMERISCHE METHODEN IN DER KONTINUUMSMECHANIK 1
für den 20. 3. 2009

1. Show for the Green-St.Venant strain tensor $\mathbf{E}(X)$:

$$
E_{i j}(X)=\frac{1}{2}\left(\frac{\partial U_{j}}{\partial X_{i}}(X)+\frac{\partial U_{i}}{\partial X_{j}}(X)+\sum_{k} \frac{\partial U_{k}}{\partial X_{i}}(X) \frac{\partial U_{k}}{\partial X_{j}}(X)\right),
$$

where $U(X)$ denotes the displacement in Lagrangian coordinates.
2. Show for the Almansi-Hamel strain tensor $\mathbf{e}(x)$:

$$
e_{i j}(x)=\frac{1}{2}\left(\frac{\partial u_{j}}{\partial x_{i}}(x)+\frac{\partial u_{i}}{\partial x_{j}}(x)-\sum_{k} \frac{\partial u_{k}}{\partial x_{i}}(x) \frac{\partial u_{k}}{\partial x_{j}}(x)\right),
$$

where $u(x)$ denotes the displacement in Eulerian coordinates.
3. Show the following relation between the Green-St.Venant strain tensor and the AlmansiHamel strain tensor:

$$
\mathbf{E}(X)=\mathbf{F}(X)^{T} \mathbf{e}(x) \mathbf{F}(X)
$$

with the deformation gradient $\mathbf{F}(X)$, where X and x denote the Lagrangian coordinates and the corresponding Eulerian coordinates, respectively.
4. Consider a three-dimensional steady state flow of an incompressible ideal fluid, whose governing equations are

$$
\begin{aligned}
(\mathbf{v} \cdot \operatorname{grad}) \mathbf{v}+\frac{1}{\rho} \operatorname{grad} p & =\mathbf{f} & \text { in } \Omega, \\
\operatorname{div} \mathbf{v} & =0 & \text { in } \Omega .
\end{aligned}
$$

Assume that the velocity \mathbf{v} can be represented by a (scalar) potential ϕ :

$$
\begin{equation*}
\mathbf{v}=-\operatorname{grad} \phi \tag{1}
\end{equation*}
$$

Show that

$$
\operatorname{curl} \mathbf{v}=0
$$

with

$$
\operatorname{curl} \mathbf{v}=\nabla \times \mathbf{v}=\left(\begin{array}{l}
\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}} \\
\frac{\partial v_{1}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{1}} \\
\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}
\end{array}\right),
$$

and derive the following relations from the governing equations:
(a) ϕ satisfies the Laplacian equation

$$
-\Delta \phi=0 .
$$

(b) For a specific force density of the form $\mathbf{f}=-\operatorname{grad} U$ the so-called Bernoulli equation holds:

$$
p+\frac{1}{2} \rho v^{2}+\rho U=\text { constant }
$$

where v denotes the Euclidian norm of \mathbf{v}.
Hint (this also applies to the following two exercises): All involved functions are assumed to be sufficiently smooth. For sufficiently smooth functions g we have

$$
\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} g=\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{i}} g .
$$

Therefore, more generally,

$$
A B g=B A g
$$

for all differential operators A, B with constant coefficients, like div, grad, curl, curl, Δ, as long as the expressions make sense.

For (b) show and use

$$
(\mathbf{v} \cdot \operatorname{grad}) \mathbf{v}=\operatorname{grad}\left(\frac{1}{2} v^{2}\right)-\mathbf{v} \times \operatorname{curl} \mathbf{v} .
$$

5. Consider a two-dimensional steady state flow of a Newtonian fluid, whose governing equations are (for simplicity without convective term):

$$
\begin{array}{rlrl}
-\nu \Delta \mathbf{v}+\frac{1}{\rho} \operatorname{grad} p & =\mathbf{f} & \text { in } \Omega \\
\operatorname{div} \mathbf{v} & =0 & & \text { in } \Omega
\end{array}
$$

Assume that the velocity \mathbf{v} can be represented by a (scalar) stream-function ψ :

$$
\begin{equation*}
\mathbf{v}=\operatorname{curl} \psi \tag{2}
\end{equation*}
$$

with

$$
\operatorname{curl} \psi=\binom{\frac{\partial \psi}{\partial x_{2}}}{-\frac{\partial \psi}{\partial x_{1}}} .
$$

Show that

$$
\operatorname{div} \mathbf{v}=0,
$$

and derive the following relation from the governing equations:

$$
\nu \Delta^{2} \psi=\operatorname{curl} \mathbf{f}
$$

with

$$
\Delta^{2} \psi=\Delta(\Delta \psi) \quad \text { and } \quad \operatorname{curl} \mathbf{f}=\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}
$$

Hint: Show and use

$$
\operatorname{curl} \operatorname{curl} \psi=-\Delta \psi .
$$

6. Consider a three-dimensional steady state flow of a Newtonian fluid, whose governing equations are (for simplicity without convective term):

$$
\begin{array}{rll}
-\nu \Delta \mathbf{v}+\frac{1}{\rho} \operatorname{grad} p & =\mathbf{f} & \text { in } \Omega \\
\operatorname{div} \mathbf{v} & =0 & \text { in } \Omega
\end{array}
$$

Assume that the velocity \mathbf{v} can be represented by a (vector-valued) stream-function Ψ :

$$
\begin{equation*}
\mathbf{v}=\operatorname{curl} \Psi \quad \text { with } \quad \operatorname{div} \Psi=0 . \tag{3}
\end{equation*}
$$

Show that

$$
\operatorname{div} \mathbf{v}=0,
$$

and derive the following relation from the governing equations:

$$
\nu \Delta^{2} \boldsymbol{\Psi}=\operatorname{curl} \mathbf{f} .
$$

Hint: Show and use

$$
\operatorname{curl}(\operatorname{curl} \Psi)=-\Delta \Psi+\operatorname{grad}(\operatorname{div} \Psi)
$$

