Chapter 1

Models

1.1 Kinematics

Let $\Omega \subset \mathbb{R}^{3}$ be an open, bounded and connected set with Lipschitz-continuous boundary $\Gamma=\partial \Omega$. The set Ω is called the reference configuration and describes, e.g., the initial state or the undeformed state of a continuum (body).

A configuration (or deformation) is a sufficiently smooth, orientation preserving and injective mapping

$$
\phi: \Omega \longrightarrow \mathbb{R}^{3} .
$$

This mapping describes, e.g., the state of the continuum at some later time or the state of a deformed continuum. The set $\phi(\Omega)$ consists of all points (or particles) x of the form

$$
x=\phi(X)
$$

with $X \in \Omega . X$ are called the material (or Lagrangian) coordinates, x are called the spatial (or Eulerian) coordinates of a particle.

The matrix

$$
\mathbf{F}(X)=\nabla \phi(X)=\left(\begin{array}{lll}
\frac{\partial \phi_{1}}{\partial X_{1}}(X) & \frac{\partial \phi_{1}}{\partial X_{2}}(X) & \frac{\partial \phi_{1}}{\partial X_{3}}(X) \\
\frac{\partial \phi_{2}}{\partial X_{1}}(X) & \frac{\partial \phi_{2}}{\partial X_{2}}(X) & \frac{\partial \phi_{2}}{\partial X_{3}}(X) \\
\frac{\partial \phi_{3}}{\partial X_{1}}(X) & \frac{\partial \phi_{3}}{\partial X_{2}}(X) & \frac{\partial \phi_{3}}{\partial X_{3}}(X)
\end{array}\right)
$$

is called the deformation gradient. Preserving the orientation corresponds to the condition

$$
J(X)=\operatorname{det} \nabla \phi(X)>0 \quad \text { for all } X \in \Omega .
$$

The displacement $U: \Omega \longrightarrow \mathbb{R}^{3}$, introduced by

$$
U(X)=x-X \quad \text { with } \quad x=\phi(X)
$$

measures the deviation from the reference configuration. With

$$
x=\phi(X) \quad \text { and } \quad x+\Delta x=\phi(X+\Delta X)
$$

we have:

$$
\Delta x=\phi(X+\Delta X)-\phi(X)=\nabla \phi(X) \Delta X+o(\Delta X)
$$

so

$$
\begin{aligned}
\|\Delta x\|_{\ell_{2}}^{2} & =\Delta X^{T} \nabla \phi(X)^{T} \nabla \phi(X) \Delta X+o\left(\|\Delta X\|_{\ell_{2}}^{2}\right) \\
& =\Delta X^{T} \mathbf{C}(x) \Delta X+o\left(\|\Delta X\|_{\ell_{2}}^{2}\right)
\end{aligned}
$$

with

$$
\mathbf{C}(X)=\mathbf{F}(X)^{T} \mathbf{F}(X)=\nabla \phi(X)^{T} \nabla \phi(X)
$$

The symmetric tensor $\mathbf{C}(X)$ is called the (right) Cauchy-Green deformation tensor. It describes the local change in distances by the deformation. It can be shown that there is no change in distances, i.e.:

$$
\mathbf{C}(X)=I \quad \text { for all } X \in \Omega,
$$

if and only if the configuration is a rigid body configuration, i.e.:

$$
\phi(X)=Q X+a
$$

where Q is an orthogonal matrix with $\operatorname{det} Q=1$ (describing a rotation) and $a \in \mathbb{R}^{3}$ (describing a translation).

The deviation of $\mathbf{C}(X)$ from the ideal case I is measured be the symmetric tensor

$$
\mathbf{E}(X)=\frac{1}{2}(\mathbf{C}(X)-I)
$$

the so called Green-St.Venant strain tensor. Then, of course, we have:

$$
\|\Delta x\|_{\ell_{2}}^{2}-\|\Delta X\|_{\ell_{2}}^{2}=2 \Delta X^{T} \mathbf{E}(X) \Delta X+o\left(\|\Delta X\|_{\ell_{2}}^{2}\right)
$$

$\mathbf{E}(X)$ can be expressed directly by the displacement $U(X)$:

$$
\mathbf{E}[U](X)=\frac{1}{2}\left(\nabla U(X)^{T}+\nabla U(X)+\nabla U(X)^{T} \nabla U(X)\right)
$$

or, component-wise:

$$
E_{i j}[U](X)=\frac{1}{2}\left(\frac{\partial U_{j}}{\partial X_{i}}(X)+\frac{\partial U_{i}}{\partial X_{j}}(X)+\sum_{k} \frac{\partial U_{k}}{\partial X_{i}}(X) \frac{\partial U_{k}}{\partial X_{j}}(X)\right) .
$$

Observe the nonlinear relation between \mathbf{E} and U.

The displacement can also be introduced in Eulerian coordinates by

$$
u(x)=x-X \quad \text { with } \quad x=\phi(X), \text { i.e. } X=\phi^{-1}(x)
$$

Then

$$
\Delta X=(\nabla \phi(X))^{-1} \Delta x+o(\Delta x) \quad \text { with } X=\phi^{-1}(x)
$$

and, consequently,

$$
\|\Delta X\|_{\ell_{2}}^{2}=\Delta x^{T} \mathbf{c}(x) \Delta x+o\left(\|\Delta x\|_{\ell_{2}}^{2}\right)
$$

with

$$
\mathbf{c}(x)=\mathbf{b}(x)^{-1} \quad \text { with } \quad \mathbf{b}(x)=\mathbf{F}(X) \mathbf{F}(X)^{T}=\nabla \phi(X) \nabla \phi(X)^{T} .
$$

Then

$$
\|\Delta x\|_{\ell_{2}}^{2}-\|\Delta X\|_{\ell_{2}}^{2}=2 \Delta x^{T} \mathbf{e}(x) \Delta x+o\left(\|\Delta x\|_{\ell_{2}}^{2}\right)
$$

with

$$
\mathbf{e}(x)=\frac{1}{2}(I-\mathbf{c}(x))
$$

Finally, it easily follows that

$$
\mathbf{e}[u](x)=\frac{1}{2}\left(\nabla u(x)^{T}+\nabla u(x)-\nabla u(x)^{T} \nabla u(x)\right) .
$$

$\mathbf{b}(x)$ is called the Finger deformation tensor or the left Cauchy-Green deformation tensor, $\mathbf{e}(x)$ is called the Almansi-Hamel strain tensor or the Euler strain tensor.

The motion of a continuum (or body) is described by a curve

$$
t \mapsto \phi_{t}
$$

Interpretation: The position x of a point (particle) at time t, whose position at time 0 was X, is given by

$$
x=\phi_{t}(X) \equiv \phi(X, t)
$$

Then the material (or Lagrangian) velocity of this particle as a function of X and t is given by

$$
V_{t}(X)=V(X, t)=\frac{\partial \phi}{\partial t}(X, t)
$$

and the material (or Lagrangian) acceleration is given by

$$
A_{t}(X)=A(X, t)=\frac{\partial^{2} \phi}{\partial t^{2}}(X, t)
$$

Observe the following linear relation between velocity and acceleration:

$$
A(X, t)=\frac{\partial V}{\partial t}(X, t)
$$

In the Eulerian approach the motion of a particle is described by the spatial velocity (field) $v(x, t)$, where $v(x, t)$ is the velocity of that particle, which passes through x at time t, so

$$
v_{t}(x)=v(x, t)=V(X, t)=\frac{\partial \phi}{\partial t}(X, t) \text { with } x=\phi(X, t) .
$$

For the spatial acceleration $a(x, t)$ of that particle we obtain:

$$
a_{t}(x)=a(x, t)=A(X, t)=\frac{\partial^{2} \phi}{\partial t^{2}}(X, t) \text { with } x=\phi(X, t) .
$$

We have for $x=\phi(X, t)$:

$$
a(x, t)=\frac{\partial}{\partial t}[v(\phi(X, t), t)]=\frac{\partial v}{\partial t}(x, t)+\sum_{i} v_{i}(x, t) \frac{\partial v}{\partial x_{i}}(x, t) .
$$

Notation: The differential operator $v \cdot \operatorname{grad}=v \cdot \nabla$, given by

$$
(v \cdot \operatorname{grad}) f=(v \cdot \nabla) f=\sum_{i=1}^{d} v_{i} \frac{\partial f}{\partial x_{i}},
$$

is called the convective derivative and the differential operator $d / d t$, given by

$$
\frac{d f}{d t}=\dot{f}=\frac{\partial f}{\partial t}+(v \cdot \operatorname{grad}) f
$$

is called the total or material derivative.
With these notations the spatial acceleration can be written in the following form:

$$
a(x, t)=\frac{d v}{d t}(x, t)=\frac{\partial v}{\partial t}(x, t)+(v(x, t) \cdot \operatorname{grad}) v(x, t)=\frac{\partial v}{\partial t}(x, t)+(v(x, t) \cdot \nabla) v(x, t) .
$$

Observe that this is a nonlinear relation between velocity and acceleration in the Eulerian approach.

For a given velocity (field) $v(x, t)$ one obtains the trajectories $\phi(X, t)$ of the individual particles as solution of the initial value problem:

$$
\begin{align*}
\frac{\partial \phi}{\partial t}(X, t) & =v(\phi(X, t), t) \tag{1.1}\\
\phi(X, 0) & =X .
\end{align*}
$$

1.2 Balance Laws

Let $\omega \subset \Omega$. The set ω_{t}, given by

$$
\begin{equation*}
\omega_{t}=\{\phi(X, t) \mid X \in \omega\} \tag{1.2}
\end{equation*}
$$

describes the position of those particles at time t, which were in ω at time $t=0$.

1.2.1 Transport Theorem

Let F be a given function of x and t. The Transport Theorem describes the rate change of the quantity

$$
\begin{equation*}
\mathcal{F}(t)=\int_{\omega_{t}} F(x, t) d x \tag{1.3}
\end{equation*}
$$

Namely:
Theorem 1.1 (Transport-Theorem). Let $t_{0} \in\left(T_{1}, T_{2}\right)$, let $\omega \subset \Omega$ be a bounded domain with $\bar{\omega}_{0} \subset \Omega$, and let v and F be continuously differentiable. Then \mathcal{F} is well-defined and continuously differentiable in an interval $\left(t_{1}, t_{2}\right) \subset\left(T_{1}, T_{2}\right)$ with $t_{0} \in\left(t_{1}, t_{2}\right)$ by the equations (1.1), (1.2) and (1.3), and we have:

$$
\frac{d \mathcal{F}}{d t}(t)=\int_{\omega_{t}}\left[\frac{\partial F}{\partial t}(x, t)+\operatorname{div}(F v)(x, t)\right] d x=\int_{\omega_{t}}\left[\frac{d F}{d t}(x, t)+F \operatorname{div}(v)(x, t)\right] d x
$$

Notation: The following notation was used in the Transport Theorem: $\operatorname{div} G=\nabla \cdot G$, given by

$$
\operatorname{div} G=\nabla \cdot G=\sum_{i=1}^{3} \frac{\partial G_{i}}{\partial x_{i}}
$$

for a continuously differentiable vector-valued function G, is called the divergence of G.
Remark: With the help of Gauss' Theorem it follows immediately that

$$
\frac{d \mathcal{F}}{d t}(t)=\int_{\omega_{t}} \frac{\partial F}{\partial t} d x+\int_{\partial \omega_{t}} F v \cdot n d s
$$

Here $n=n(x)$ denotes the outer normal unit vector at a point x on the boundary of ω_{t}.

1.2.2 Conservation of Mass

Let $\rho(x, t)$ denote the mass density of a body at the position x and time t. The principle of conservation of mass states that no mass will be generated or destroyed, i. e.:

$$
\frac{d}{d t} \int_{\omega_{t}} \rho(x, t) d x=0
$$

Under appropriate smoothness conditions the Transport Theorem implies:

$$
\int_{\omega_{t}}\left[\frac{\partial \rho}{\partial t}(x, t)+\operatorname{div}(\rho v)(x, t)\right] d x=0
$$

for all t and all bounded domains ω with $\bar{\omega} \subset \Omega$. This results in the following differential equation, the so-called equation of continuity: either in conservative form:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho v)=0 \tag{1.4}
\end{equation*}
$$

or, equivalently, in the convective form:

$$
\frac{d \rho}{d t}+\rho \operatorname{div} v=0
$$

In the special case $\rho=$ constant (incompressible fluid) the equation of continuity is given by

$$
\begin{equation*}
\operatorname{div} v=0 \tag{1.5}
\end{equation*}
$$

We have (by the substitution rule)

$$
\int_{\omega_{t}} \rho(x, t) d x=\int_{\omega} \rho(\phi(X, t)) J(X, t) d X
$$

Hence, the conservation of mass in Lagrangian coordinates reads:

$$
\frac{d}{d t}(\rho(\phi(X, t), t) J(X, t))=0
$$

Therefore,

$$
\rho(x, t)=\frac{1}{J(X, t)} \rho_{0}(X) \quad \text { with } x=\phi(X, t) \quad \text { and } \rho_{0}(X)=\rho(X, 0) .
$$

1.2.3 Balance of Momentum and Angular Momentum

The total (linear) momentum of all particles in ω_{t} is given by

$$
\int_{\omega_{t}} \rho(x, t) v(x, t) d x
$$

Newton's second law states that the rate of change of the (linear) momentum is equal to the applied forces $F\left(\omega_{t}\right)$, hence

$$
\begin{equation*}
\frac{d}{d t} \int_{\omega_{t}} \rho(x, t) v(x, t) d x=F\left(\omega_{t}\right) \tag{1.6}
\end{equation*}
$$

The forces acting on the body can be split into applied body forces $F_{V}\left(\omega_{t}\right)$ and applied surface forces $F_{S}\left(\omega_{t}\right)$:

$$
F\left(\omega_{t}\right)=F_{V}\left(\omega_{t}\right)+F_{S}\left(\omega_{t}\right) .
$$

If the body forces can be described by a specific force density (force per unit mass) $f(x, t)$, then we obtain the representation

$$
F_{V}\left(\omega_{t}\right)=\int_{\omega_{t}} \rho(x, t) f(x, t) d x
$$

An example of such a force is the force of gravity with $f=(0,0,-g)^{T}$.

The internal surface forces can be described by a vector $\vec{t}(x, t, n)$ (force per unit area), the so-called Cauchy stress vector:

$$
F_{S}\left(\omega_{t}\right)=\int_{\partial \omega_{t}} \vec{t}(x, t, n(x)) d s
$$

Summarizing, we obtain the following balance law for the momentum:

$$
\frac{d}{d t} \int_{\omega_{t}} \rho(x, t) v(x, t) d x=\int_{\omega_{t}} \rho(x, t) f(x, t) d x+\int_{\partial \omega_{t}} \vec{t}(x, t, n(x)) d s
$$

The total angular momentum of all particles in ω_{t} is given by

$$
\int_{\omega_{t}} x \times \rho(x, t) v(x, t) d x
$$

Newton's second law states that the rate of change of the angular momentum is equal to the applied torque, so

$$
\frac{d}{d t} \int_{\omega_{t}} x \times \rho(x, t) v(x, t) d x=\int_{\omega_{t}} x \times \rho(x, t) f(x, t) d x+\int_{\partial \omega_{t}} x \times \vec{t}(x, t, n(x)) d s
$$

These two equations are also called equations of motion, in the steady state case, also the equilibrium conditions.

Under reasonable assumptions it can be shown that the stress vector $\vec{t}(x, t, n)=$ $\left(t_{i}(x, t, n)\right)$ can be represented by the so-called Cauchy stress tensor $\sigma=\left(\sigma_{i j}\right)$ in the following form:

$$
t_{i}(x, t, n)=\sum_{j} \sigma_{j i}(x, t) n_{j} .
$$

Using Gauss' Theorem and the Transport Theorem one obtains for sufficiently smooth functions the following differential equation (in conservative form):

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho v_{i}\right)+\operatorname{div}\left(\rho v_{i} v\right)=\sum_{j} \frac{\partial \sigma_{j i}}{\partial x_{j}}+\rho f_{i} \tag{1.7}
\end{equation*}
$$

from the balance of momentum, or in convective form

$$
\begin{equation*}
\rho \frac{\partial v_{i}}{\partial t}+\rho v \cdot \operatorname{grad} v_{i}=\sum_{j} \frac{\partial \sigma_{j i}}{\partial x_{j}}+\rho f_{i} \tag{1.8}
\end{equation*}
$$

by using the equation of continuity,
It can be shown that the balance of angular momentum is satisfied if and only if σ is symmetric:

$$
\sigma^{T}=\sigma .
$$

Therefore, the balance of momentum in convective form can also be written in the following form:

$$
\rho \frac{\partial v}{\partial t}+\rho(v \cdot \operatorname{grad}) v=\operatorname{div} \sigma+\rho f
$$

with

$$
\operatorname{div} \sigma=\left(\sum_{j} \frac{\partial \sigma_{i j}}{\partial x_{j}}\right)_{i=1,2,3}
$$

So far, the equations of motion have been derived in Eulerian coordinates.
By transforming the integrals one easily obtains the equations of motion in Lagrangian coordinates. We have:

$$
\begin{aligned}
\int_{\omega_{t}} \rho(x, t) v(x, t) d x & =\int_{\omega} \rho_{0}(X) V(X, t) d X \\
\int_{\omega_{t}} \rho(x, t) f(x, t) d x & =\int_{\omega} \rho_{0}(X) F(X, t) d X \\
\int_{\partial \omega_{t}} \sigma(x, t) n(x, t) d s & =\int_{\partial \omega} \mathbf{P}(X, t) N(X) d S
\end{aligned}
$$

with the specific force density $F(X, t)$ in Lagrangian coordinates:

$$
F(X, t)=f(x, t) \quad \text { for } x=\phi(X, t)
$$

the unit normal vector $N(X)$ in Lagrangian coordinates:

$$
\nabla \phi(X, t)^{-T} N(X)=\left\|\nabla \phi(X, t)^{-T} N(X)\right\|_{\ell_{2}} n(x, t) \quad \text { for } x=\phi(X, t)
$$

and

$$
\mathbf{P}(X, t)=J(X, t) \sigma(x, t) \nabla \phi(X, t)^{-T} \quad \text { for } x=\phi(X, t)
$$

the so-called first Piola Kirchhoff stress tensor.
Remark: The last transformation rule is based on Nanson's formula:

$$
\int_{\partial \omega_{t}} \sigma(x, t) n(x, t) d s=\int_{\partial \omega} \sigma(x, t) J(X, t) \nabla \phi(X, t)^{-T} N(X) d S .
$$

Then one obtains from the balance of momentum the following differential equation in Lagrangian coordinates:

$$
\rho_{0}(X) \frac{\partial^{2} \phi}{\partial t^{2}}(X, t)-\operatorname{div} \mathbf{P}(X, t)=\rho_{0}(X) F(X, t)
$$

The balance of angular momentum is satisfied if and only if

$$
\mathbf{S}(X, t)^{T}=\mathbf{S}(X, t)
$$

with

$$
\mathbf{S}(X, t)=\nabla \phi(X, t)^{-1} \mathbf{P}(X, t)=J(X, t) \nabla \phi(X, t)^{-1} \sigma(x, t) \nabla \phi(X, t)^{-T} \quad \text { for } x=\phi(X, t),
$$

the so-called second Piola Kirchhoff stress tensor.
The corresponding transformation of the tensors $\mathbf{S} \mapsto \sigma$, given by

$$
\sigma(x, t)=\frac{1}{J(X, t)} \nabla \phi(X, t) \mathbf{S}(X, t) \nabla \phi(X, t)^{T} \quad \text { for } x=\phi(X, t)
$$

is called the Piola transformation.
Remark: Other balance laws like the balance of energy will not be discussed here.

1.3 Constitutive Laws

The equations of motion do not yet completely describe the configuration of a body. Equations for the stress in form of a constitutive laws are necessary.

Two important special cases will be considered here:

1.3.1 Elastic Materials

A material is called elastic if there is a constitutive law of the form

$$
\mathbf{S}(X)=\hat{\mathbf{S}}(X, \mathbf{E}(X))
$$

For the important sub-class of hyperelastic materials the constitutive law can be represented by an energy functional:

$$
\hat{\mathbf{S}}(X, \mathbf{E})=\frac{\partial \Psi}{\partial \mathbf{E}}(X, \mathbf{E})
$$

where $\Psi(X, \mathbf{E})$ is the so-called stored energy function.
A material is called linearly elastic if

$$
\Psi(X, \mathbf{E})=\frac{1}{2} \sum_{i j k l} C_{i j k l}(X) E_{i j} E_{k l},
$$

where the so-called elastic coefficients (or elasticity coefficients) $C_{i j k l}(X)$ (which form the so-called elasticity tensor) have the following properties:

$$
C_{i j k l}(X)=C_{k l i j}(X)
$$

and

$$
C_{i j k l}(X)=C_{j i k l}(X)=C_{j i l k}(X) .
$$

From these conditions it follows that only 21 coefficients can be chosen independently from each other. For the corresponding constitutive law we obtain the linear relations:

$$
\begin{equation*}
S_{i j}=\sum_{k l} C_{i j k l}(X) E_{k l}, \tag{1.9}
\end{equation*}
$$

which is called Hooke's law.
An important special case of linearly elastic materials are the St.Venant-Kirchhoff materials (homogenous, isotropic, and linearly elastic materials), for which the constitutive law has the form

$$
\mathbf{S}=\lambda \operatorname{trace}(\mathbf{E}) I+2 \mu \mathbf{E}
$$

The parameters λ and μ are called Lamé coefficients. They are related to Young's modulus (or modulus of elasticity) E and Poisson's ratio ν by

$$
E=\frac{\mu(3 \lambda+2 \mu)}{\lambda+\mu}, \quad \nu=\frac{\lambda}{2(\lambda+\mu)}
$$

and, vice versa

$$
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)}, \quad \mu=\frac{E}{2(1+\nu)} .
$$

It can be shown by arguments from physics that:

$$
0<\nu<\frac{1}{2} \text { and } E>0
$$

These conditions are equivalent to

$$
\lambda>0 \text { and } \mu>0
$$

For St.Venant-Kirchhoff materials the stored energy function takes the form

$$
\Psi(\mathbf{E})=\frac{\lambda}{2}(\operatorname{trace}(\mathbf{E}))^{2}+\mu \operatorname{trace}\left(\mathbf{E}^{2}\right)
$$

so

$$
C_{i j k l}=\lambda \delta_{i j} \delta_{k l}+\mu\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)
$$

1.3.2 Newtonian Fluids

Starting point is the following ansatz for the Cauchy stress tensor

$$
\sigma=-p I+\tau
$$

where $p(x, t)$ denotes the pressure in the fluid at the position x and time t and τ depends on the first spatial derivative of the velocity field $v(x, t)$.

For a parallel flow (in x_{1} direction) Newton postulated the linear relation

$$
\tau_{21}=\mu \frac{d v_{1}}{d x_{2}}
$$

for the shear stress τ_{21}. The coefficient μ is called the dynamic viscosity of the fluid.
Under reasonable assumptions it can be shown that this implies the following form for τ :

$$
\tau=\lambda \operatorname{div} v I+2 \mu \varepsilon(v)
$$

with

$$
\varepsilon(v)=\left(\varepsilon(v)_{i j}\right), \quad \varepsilon(v)_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) .
$$

Observe that $\operatorname{div} v=\operatorname{trace} \varepsilon(v)$ and the formal similarity to the constitutive law for St. Venant-Kirchhoff materials.

Arguments from physics show that

$$
\mu \geq 0 \quad \text { and } \quad \hat{\mu}=\lambda+\frac{2}{3} \mu \geq 0
$$

The coefficient $\hat{\mu}$ is called bulk viscosity. In the following we will assume that $\hat{\mu}=0$, hence $\lambda=-2 \mu / 3$. Therefore

$$
\sigma=-\left(p+\frac{2 \mu}{3} \operatorname{div} v\right) I+2 \mu \varepsilon(v)
$$

For $\rho=$ constant, $\mu=$ constant and with the help of (1.5) ($\operatorname{div} v=0)$ the expressions for the internal surface force can be further simplified:

$$
\operatorname{div} \sigma=-\operatorname{grad} p+\mu \Delta v
$$

where Δ denotes the Laplacian operator:

$$
\Delta=\sum_{j=1}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}}
$$

1.4 Boundary Value and Initial-Boundary Value Problems

For a complete description we need boundary conditions and for time-dependent problems initial conditions.

1.4.1 Elastostatics and Elastodynamics

Usually Lagrangian coordinates are used in elasticity.
In typical applications the surface force is prescribed on some part Γ_{N} of the boundary $\Gamma=\partial \Omega$ of Ω, given by its surface force density $T_{N}(x)$. This results in the boundary condition

$$
(\nabla \phi \mathbf{S}) N=T_{N} \quad \text { for all } x \in \Gamma_{N}, t>0
$$

For the remaining part Γ_{D} of the boundary we assume that the deformation is known. This leads to the boundary condition

$$
\phi=\phi_{D} \quad \text { for all } X \in \Gamma_{D}, t>0
$$

As initial conditions usually the initial configuration and the initial velocity are prescribed:

$$
\phi=\phi_{0}, \quad \frac{\partial \phi}{\partial t}=V_{0} \quad \text { for } t=0
$$

Hence we obtain the following initial-boundary value problem of elastodynamics:

$$
\begin{array}{rlrl}
\rho_{0} \frac{\partial^{2} \phi}{\partial t^{2}}-\operatorname{div}(\nabla \phi \mathbf{S}) & =\rho_{0} F & & \text { in } \Omega, t>0, \\
\mathbf{S} & =\hat{\mathbf{S}}(\mathbf{E}) & & \text { in } \Omega, t>0, \\
\mathbf{E} & =\frac{1}{2}\left(\nabla \phi^{T} \nabla \phi-I\right) & & \text { in } \Omega, t>0, \\
\phi & =\phi_{D} & & \text { on } \Gamma_{D}, t>0, \\
(\nabla \phi \mathbf{S}) N=T_{N} & & \text { on } \Gamma_{N}, t>0, \\
\phi=\phi_{0}, \quad \frac{\partial \phi}{\partial t}=V_{0} & & \text { in } \Omega, t=0
\end{array}
$$

The corresponding time-independent problem leads to the following boundary value problem of elastostatics:

$$
\begin{aligned}
-\operatorname{div}(\nabla \phi \mathbf{S}) & =\rho_{0} F & & \text { in } \Omega, \\
\mathbf{S} & =\hat{\mathbf{S}}(\mathbf{E}) & & \text { in } \Omega, \\
\mathbf{E} & =\frac{1}{2}\left(\nabla \phi^{T} \nabla \phi-I\right) & & \text { in } \Omega, \\
\phi & =\phi_{D} & & \text { on } \Gamma_{D}, \\
(\nabla \phi \mathbf{S}) N & =T_{N} & & \text { on } \Gamma_{N} .
\end{aligned}
$$

1.4.2 Linear(ized) Elasticity

For small displacements it is justified

- not to distinguish between the Eulerian and the Lagrangian description (in the sequel we will use the Eulerian description), and
- to replace the strain tensor by the linearized strain tensor ε, given by

$$
\varepsilon_{i j}(u)=\frac{1}{2}\left(\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{j}}\right) .
$$

Then Hooke's law (1.9) can be written in the form

$$
\sigma_{i j}=\sum_{k l} C_{i j k l} \varepsilon_{k l}
$$

or, in short,

$$
\sigma=C \varepsilon
$$

We obtain the following initial-boundary value problem of linear(ized) elastodynamics:

$$
\begin{aligned}
\rho_{0} \frac{\partial^{2} u}{\partial t^{2}}-\operatorname{div} \sigma & =\rho_{0} f & & \text { in } \Omega, t>0, \\
\sigma & =C \varepsilon & & \text { in } \Omega, t>0, \\
\varepsilon & =\frac{1}{2}\left(\nabla u^{T}+\nabla u\right) & & \text { in } \Omega, t>0, \\
u & =u_{D} & & \text { on } \Gamma_{D}, t>0, \\
\sigma n & =t_{N} & & \text { on } \Gamma_{N}, t>0, \\
u=u_{0}, & \frac{\partial u}{\partial t}=v_{0} & & \text { in } \Omega, t=0,
\end{aligned}
$$

and the following boundary value problem of linear(ized) elastostatics:

$$
\begin{aligned}
-\operatorname{div} \sigma & =\rho_{0} f & & \text { in } \Omega, \\
\sigma & =C \varepsilon & & \text { in } \Omega, \\
\varepsilon & =\frac{1}{2}\left(\nabla u^{T}+\nabla u\right) & & \text { in } \Omega, \\
u & =u_{D} & & \text { on } \Gamma_{D}, \\
\sigma n & =t_{N} & & \text { on } \Gamma_{N} .
\end{aligned}
$$

For St. Venant-Kirchhoff materials we obtain, in particular,

$$
\sigma=\lambda \operatorname{trace}(\varepsilon) I+2 \mu \varepsilon
$$

and from constitutive law and the linearized strain-displacement relations it follows that:

$$
\begin{aligned}
-\operatorname{div} \sigma & =-2 \mu \operatorname{div} \varepsilon(u)-\lambda \operatorname{grad} \operatorname{div} u \\
& =-\mu \Delta u-(\lambda+\mu) \operatorname{grad} \operatorname{div} u
\end{aligned}
$$

The corresponding second order differential equations for the displacement u are called Lamé (or Cauchy-Navier) equations.

1.4.3 The Navier-Stokes Equations

Usually Eulerian coordinates are used in fluid mechanics. The unknown functions are, e.g., the velocity $v(x, t)$ and the pressure $p(x, t)$.

In typical applications the surface force is prescribed on some part Γ_{N} of the boundary $\Gamma=\partial \Omega$ of Ω, given by its surface force density $t_{N}(x)$. This results in the boundary condition

$$
\sigma n=t_{N} \quad \text { for all } x \in \Gamma_{N}, t>0 .
$$

For the remaining part Γ_{D} of the boundary we assume that the velocity is known. This leads to the boundary condition

$$
v=v_{D} \quad \text { for all } x \in \Gamma_{D}, t>0
$$

As initial condition usually the initial velocity is prescribed:

$$
v=v_{0} \quad \text { for } t=0
$$

For the case $\rho=$ constant and $\mu=$ constant one obtains the equations of motion in conservative form

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho v_{i}\right)+\operatorname{div}\left(\rho v_{i} v\right)=-\frac{\partial p}{\partial x_{i}}+\mu \Delta v_{i}+\rho f_{i} \tag{1.10}
\end{equation*}
$$

or in convective form

$$
\begin{equation*}
\rho \frac{\partial v}{\partial t}+\rho(v \cdot \operatorname{grad}) v=-\operatorname{grad} p+\mu \Delta v+\rho f \tag{1.11}
\end{equation*}
$$

or, after dividing by ρ :

$$
\begin{equation*}
\frac{\partial v}{\partial t}+(v \cdot \operatorname{grad}) v=-\frac{1}{\rho} \operatorname{grad} p+\nu \Delta v+f \tag{1.12}
\end{equation*}
$$

with $\nu=\mu / \rho$, the kinematic viscosity. The equations (1.10) or (1.11) or (1.12) are called the Navier-Stokes equations.

In summary, one obtains the following initial-boundary value problem of fluid mechanics:

$$
\begin{aligned}
\frac{\partial v}{\partial t}+(v \cdot \operatorname{grad}) v-\nu \Delta v+\frac{1}{\rho} \operatorname{grad} p & =f & & \text { in } \Omega, t>0 \\
\operatorname{div} v & =0 & & \text { in } \Omega, t>0 \\
v & =v_{D} & & \text { on } \Gamma_{D}, t>0 \\
\sigma n & =t_{N} & & \text { on } \Gamma_{N}, t>0 \\
v & =v_{0} & & \text { in } \Omega, t=0
\end{aligned}
$$

and, for the steady state case, the corresponding boundary value problem:

$$
\begin{aligned}
(v \cdot \operatorname{grad}) v-\nu \Delta u+\frac{1}{\rho} \operatorname{grad} p & =f & & \text { in } \Omega, \\
\operatorname{div} v & =0 & & \text { in } \Omega, \\
v & =v_{D} & & \text { on } \Gamma_{D}, \\
\sigma n & =t_{N} & & \text { on } \Gamma_{N} .
\end{aligned}
$$

Dimensional analysis:

Starting from reference values L^{*}, t^{*}, U^{*} and p^{*} for the length, the time, the velocity and the pressure new variables are introduced by

$$
x_{i}^{\prime}=\frac{x_{i}}{L^{*}}, t_{i}^{\prime}=\frac{t}{t^{*}}, v_{i}^{\prime}=\frac{v_{i}}{U^{*}}, p^{\prime}=\frac{p}{p^{*}} .
$$

By transformation of variables one obtains:

$$
\frac{\rho U^{*}}{t^{*}} \frac{\partial v_{i}^{\prime}}{\partial t^{\prime}}+\frac{\rho\left(U^{*}\right)^{2}}{L^{*}} \sum_{j=1}^{N} v_{j}^{\prime} \frac{\partial v_{i}^{\prime}}{x_{j}^{\prime}}=-\frac{p^{*}}{L^{*}} \frac{\partial p^{\prime}}{\partial x_{i}^{\prime}}+\frac{\mu U^{*}}{\left(L^{*}\right)^{2}} \Delta v_{i}^{\prime}+\rho f
$$

or, after multiplication by $L^{*} /\left(\rho\left(U^{*}\right)^{2}\right)$

$$
\frac{L *}{t^{*} U^{*}} \frac{\partial v_{i}^{\prime}}{\partial t^{\prime}}+1 \cdot \sum_{j=1}^{N} v_{j}^{\prime} \frac{\partial v_{i}^{\prime}}{x_{j}^{\prime}}=-\frac{p^{*}}{\rho\left(U^{*}\right)^{2}} \frac{\partial p^{\prime}}{\partial x_{i}^{\prime}}+\frac{\mu}{\rho L^{*} U^{*}} \Delta v_{i}^{\prime}+f^{\prime}
$$

with $f^{\prime}=L^{*} /\left(U^{*}\right)^{2} \cdot f$. With the setting $t^{*}=L^{*} / U^{*}, p^{*}=\rho\left(U^{*}\right)^{2}$ and

$$
R e=\frac{\rho L^{*} U^{*}}{\mu}=\frac{L^{*} U^{*}}{\nu}
$$

the so-called Reynolds number, one obtains

$$
\begin{equation*}
\frac{\partial v_{i}}{\partial t}+\sum_{j=1}^{N} v_{j} \frac{\partial v_{i}}{x_{j}}=-\frac{\partial p}{\partial x_{i}}+\frac{1}{R e} \Delta v_{i}+f \tag{1.13}
\end{equation*}
$$

For $R e \ll 1$ the viscosity of the flow dominates, for $R e \gg 1$ the flow is dominantly convective. For $R e \rightarrow \infty$ one formally obtains the so-called Euler equations:

$$
\frac{\partial v}{\partial t}+(v \cdot \operatorname{grad}) v+\operatorname{grad} p=f
$$

If the transformed equations are multiplied by $\left(L^{*}\right)^{2} /\left(\mu U^{*}\right)$, one obtains

$$
\frac{\rho\left(L^{*}\right)^{2}}{\mu t^{*}} \frac{\partial v_{i}^{\prime}}{\partial t^{\prime}}+\frac{\rho L^{*} U^{*}}{\mu} \sum_{j=1}^{N} v_{j}^{\prime} \frac{\partial v_{i}^{\prime}}{x_{j}^{\prime}}=-\frac{p^{*} L^{*}}{\mu U^{*}} \frac{\partial p^{\prime}}{\partial x_{i}^{\prime}}+1 \cdot \Delta v_{i}^{\prime}+f^{\prime}
$$

with $f^{\prime}=\rho\left(L^{*}\right)^{2} f /\left(\mu U^{*}\right)$. With the setting $t^{*}=\left(\rho\left(U^{*}\right)^{2}\right) / \mu, p^{*}=\left(\mu U^{*}\right) / L^{*}$ it follows that

$$
\begin{equation*}
\frac{\partial v_{i}}{\partial t}+R e \sum_{j=1}^{N} v_{j} \frac{\partial v_{i}}{x_{j}}=-\frac{\partial p}{\partial x_{i}}+\Delta v_{i}+f \tag{1.14}
\end{equation*}
$$

In this formulation one obtains for $R e=0$ the so-called Stokes equations:

$$
\begin{equation*}
\frac{\partial v}{\partial t}-\Delta v+\operatorname{grad} p=f \tag{1.15}
\end{equation*}
$$

