
Chapter 1

Models

1.1 Kinematics

Let Ω ⊂ R
3 be an open, bounded and connected set with Lipschitz-continuous boundary

Γ = ∂Ω. The set Ω is called the reference configuration and describes, e.g., the initial state
or the undeformed state of a continuum (body).

A configuration (or deformation) is a sufficiently smooth, orientation preserving and
injective mapping

φ : Ω −→ R
3.

This mapping describes, e.g., the state of the continuum at some later time or the state of
a deformed continuum. The set φ(Ω) consists of all points (or particles) x of the form

x = φ(X)

with X ∈ Ω. X are called the material (or Lagrangian) coordinates, x are called the spatial
(or Eulerian) coordinates of a particle.
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is called the deformation gradient. Preserving the orientation corresponds to the condition

J(X) = det∇φ(X) > 0 for all X ∈ Ω.

The displacement U : Ω −→ R
3, introduced by

U(X) = x − X with x = φ(X)
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measures the deviation from the reference configuration. With

x = φ(X) and x + ∆x = φ(X + ∆X)

we have:
∆x = φ(X + ∆X) − φ(X) = ∇φ(X)∆X + o(∆X),

so

‖∆x‖2

ℓ2
= ∆XT∇φ(X)T∇φ(X)∆X + o(‖∆X‖2

ℓ2
)

= ∆XTC(x)∆X + o(‖∆X‖2

ℓ2
)

with
C(X) = F(X)TF(X) = ∇φ(X)T∇φ(X).

The symmetric tensor C(X) is called the (right) Cauchy-Green deformation tensor. It
describes the local change in distances by the deformation. It can be shown that there is
no change in distances, i.e.:

C(X) = I for all X ∈ Ω,

if and only if the configuration is a rigid body configuration, i.e.:

φ(X) = QX + a,

where Q is an orthogonal matrix with det Q = 1 (describing a rotation) and a ∈ R
3

(describing a translation).
The deviation of C(X) from the ideal case I is measured be the symmetric tensor

E(X) =
1

2
(C(X) − I),

the so called Green-St.Venant strain tensor. Then, of course, we have:

‖∆x‖2

ℓ2
− ‖∆X‖2

ℓ2
= 2 ∆XTE(X)∆X + o(‖∆X‖2

ℓ2
).

E(X) can be expressed directly by the displacement U(X):

E[U ](X) =
1

2

(

∇U(X)T + ∇U(X) + ∇U(X)T∇U(X)
)

,

or, component-wise:

Eij [U ](X) =
1

2

(

∂Uj

∂Xi

(X) +
∂Ui

∂Xj

(X) +
∑

k

∂Uk

∂Xi

(X)
∂Uk

∂Xj

(X)

)

.

Observe the nonlinear relation between E and U .
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The displacement can also be introduced in Eulerian coordinates by

u(x) = x − X with x = φ(X), i.e. X = φ−1(x).

Then

∆X = (∇φ(X))−1∆x + o(∆x) with X = φ−1(x)

and, consequently,

‖∆X‖2

ℓ2
= ∆xTc(x)∆x + o(‖∆x‖2

ℓ2
)

with

c(x) = b(x)−1 with b(x) = F(X)F(X)T = ∇φ(X)∇φ(X)T .

Then

‖∆x‖2

ℓ2
− ‖∆X‖2

ℓ2
= 2 ∆xT e(x)∆x + o(‖∆x‖2

ℓ2
).

with

e(x) =
1

2
(I − c(x))

Finally, it easily follows that

e[u](x) =
1

2

(

∇u(x)T + ∇u(x) −∇u(x)T∇u(x)
)

.

b(x) is called the Finger deformation tensor or the left Cauchy-Green deformation tensor,
e(x) is called the Almansi-Hamel strain tensor or the Euler strain tensor.

The motion of a continuum (or body) is described by a curve

t 7→ φt.

Interpretation: The position x of a point (particle) at time t, whose position at time 0 was
X, is given by

x = φt(X) ≡ φ(X, t).

Then the material (or Lagrangian) velocity of this particle as a function of X and t is
given by

Vt(X) = V (X, t) =
∂φ

∂t
(X, t),

and the material (or Lagrangian) acceleration is given by

At(X) = A(X, t) =
∂2φ

∂t2
(X, t).

Observe the following linear relation between velocity and acceleration:

A(X, t) =
∂V

∂t
(X, t).



4 CHAPTER 1. MODELS

In the Eulerian approach the motion of a particle is described by the spatial velocity
(field) v(x, t), where v(x, t) is the velocity of that particle, which passes through x at time
t, so

vt(x) = v(x, t) = V (X, t) =
∂φ

∂t
(X, t) with x = φ(X, t).

For the spatial acceleration a(x, t) of that particle we obtain:

at(x) = a(x, t) = A(X, t) =
∂2φ

∂t2
(X, t) with x = φ(X, t).

We have for x = φ(X, t):

a(x, t) =
∂

∂t
[v(φ(X, t), t)] =

∂v

∂t
(x, t) +

∑

i

vi(x, t)
∂v

∂xi

(x, t).

Notation: The differential operator v · grad = v · ∇, given by

(v · grad)f = (v · ∇)f =

d
∑

i=1

vi

∂f

∂xi

,

is called the convective derivative and the differential operator d/dt, given by

df

dt
= ḟ =

∂f

∂t
+ (v · grad)f,

is called the total or material derivative.

With these notations the spatial acceleration can be written in the following form:

a(x, t) =
dv

dt
(x, t) =

∂v

∂t
(x, t) + (v(x, t) · grad)v(x, t) =

∂v

∂t
(x, t) + (v(x, t) · ∇)v(x, t).

Observe that this is a nonlinear relation between velocity and acceleration in the Eulerian
approach.

For a given velocity (field) v(x, t) one obtains the trajectories φ(X, t) of the individual
particles as solution of the initial value problem:

∂φ

∂t
(X, t) = v(φ(X, t), t),

φ(X, 0) = X.

(1.1)

1.2 Balance Laws

Let ω ⊂ Ω. The set ωt, given by

ωt = {φ(X, t)
∣

∣ X ∈ ω}, (1.2)

describes the position of those particles at time t, which were in ω at time t = 0.
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1.2.1 Transport Theorem

Let F be a given function of x and t. The Transport Theorem describes the rate change
of the quantity

F(t) =

∫

ωt

F (x, t) dx. (1.3)

Namely:

Theorem 1.1 (Transport-Theorem). Let t0 ∈ (T1, T2), let ω ⊂ Ω be a bounded domain
with ω0 ⊂ Ω, and let v and F be continuously differentiable. Then F is well-defined and
continuously differentiable in an interval (t1, t2) ⊂ (T1, T2) with t0 ∈ (t1, t2) by the equations
(1.1), (1.2) and (1.3), and we have:

dF

dt
(t) =

∫

ωt

[

∂F

∂t
(x, t) + div(Fv)(x, t)

]

dx =

∫

ωt

[

dF

dt
(x, t) + F div(v)(x, t)

]

dx.

Notation: The following notation was used in the Transport Theorem: div G = ∇ · G,
given by

div G = ∇ · G =
3
∑

i=1

∂Gi

∂xi

for a continuously differentiable vector-valued function G, is called the divergence of G.

Remark: With the help of Gauss’ Theorem it follows immediately that

dF

dt
(t) =

∫

ωt

∂F

∂t
dx +

∫

∂ωt

F v · n ds.

Here n = n(x) denotes the outer normal unit vector at a point x on the boundary of ωt.

1.2.2 Conservation of Mass

Let ρ(x, t) denote the mass density of a body at the position x and time t. The principle
of conservation of mass states that no mass will be generated or destroyed, i. e.:

d

dt

∫

ωt

ρ(x, t) dx = 0.

Under appropriate smoothness conditions the Transport Theorem implies:
∫

ωt

[

∂ρ

∂t
(x, t) + div(ρv)(x, t)

]

dx = 0

for all t and all bounded domains ω with ω ⊂ Ω. This results in the following differential
equation, the so-called equation of continuity: either in conservative form:

∂ρ

∂t
+ div(ρv) = 0, (1.4)
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or, equivalently, in the convective form:

dρ

dt
+ ρ div v = 0.

In the special case ρ = constant (incompressible fluid) the equation of continuity is given
by

div v = 0. (1.5)

We have (by the substitution rule)

∫

ωt

ρ(x, t) dx =

∫

ω

ρ(φ(X, t))J(X, t) dX.

Hence, the conservation of mass in Lagrangian coordinates reads:

d

dt
(ρ(φ(X, t), t)J(X, t)) = 0,

Therefore,

ρ(x, t) =
1

J(X, t)
ρ0(X) with x = φ(X, t) and ρ0(X) = ρ(X, 0).

1.2.3 Balance of Momentum and Angular Momentum

The total (linear) momentum of all particles in ωt is given by

∫

ωt

ρ(x, t)v(x, t) dx.

Newton’s second law states that the rate of change of the (linear) momentum is equal to
the applied forces F (ωt), hence

d

dt

∫

ωt

ρ(x, t)v(x, t) dx = F (ωt). (1.6)

The forces acting on the body can be split into applied body forces FV (ωt) and applied
surface forces FS(ωt):

F (ωt) = FV (ωt) + FS(ωt).

If the body forces can be described by a specific force density (force per unit mass) f(x, t),
then we obtain the representation

FV (ωt) =

∫

ωt

ρ(x, t)f(x, t) dx.

An example of such a force is the force of gravity with f = (0, 0,−g)T .
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The internal surface forces can be described by a vector ~t(x, t, n) (force per unit area),
the so-called Cauchy stress vector:

FS(ωt) =

∫

∂ωt

~t(x, t, n(x)) ds.

Summarizing, we obtain the following balance law for the momentum:

d

dt

∫

ωt

ρ(x, t)v(x, t) dx =

∫

ωt

ρ(x, t)f(x, t) dx +

∫

∂ωt

~t(x, t, n(x)) ds.

The total angular momentum of all particles in ωt is given by

∫

ωt

x × ρ(x, t)v(x, t) dx.

Newton’s second law states that the rate of change of the angular momentum is equal to
the applied torque, so

d

dt

∫

ωt

x × ρ(x, t)v(x, t) dx =

∫

ωt

x × ρ(x, t)f(x, t) dx +

∫

∂ωt

x × ~t(x, t, n(x)) ds.

These two equations are also called equations of motion, in the steady state case, also the
equilibrium conditions.

Under reasonable assumptions it can be shown that the stress vector ~t(x, t, n) =
(ti(x, t, n)) can be represented by the so-called Cauchy stress tensor σ = (σij) in the
following form:

ti(x, t, n) =
∑

j

σji(x, t) nj.

Using Gauss’ Theorem and the Transport Theorem one obtains for sufficiently smooth
functions the following differential equation (in conservative form):

∂

∂t
(ρvi) + div(ρviv) =

∑

j

∂σji

∂xj

+ ρfi (1.7)

from the balance of momentum, or in convective form

ρ
∂vi

∂t
+ ρv · grad vi =

∑

j

∂σji

∂xj

+ ρfi (1.8)

by using the equation of continuity,
It can be shown that the balance of angular momentum is satisfied if and only if σ is

symmetric:

σT = σ.
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Therefore, the balance of momentum in convective form can also be written in the following
form:

ρ
∂v

∂t
+ ρ(v · grad)v = div σ + ρf

with

div σ =

(

∑

j

∂σij

∂xj

)

i=1,2,3

.

So far, the equations of motion have been derived in Eulerian coordinates.
By transforming the integrals one easily obtains the equations of motion in Lagrangian

coordinates. We have:

∫

ωt

ρ(x, t)v(x, t) dx =

∫

ω

ρ0(X)V (X, t) dX

∫

ωt

ρ(x, t)f(x, t) dx =

∫

ω

ρ0(X)F (X, t) dX

∫

∂ωt

σ(x, t)n(x, t) ds =

∫

∂ω

P(X, t)N(X) dS

with the specific force density F (X, t) in Lagrangian coordinates:

F (X, t) = f(x, t) for x = φ(X, t),

the unit normal vector N(X) in Lagrangian coordinates:

∇φ(X, t)−TN(X) = ‖∇φ(X, t)−T N(X)‖ℓ2 n(x, t) for x = φ(X, t),

and
P(X, t) = J(X, t) σ(x, t)∇φ(X, t)−T for x = φ(X, t),

the so-called first Piola Kirchhoff stress tensor.

Remark: The last transformation rule is based on Nanson’s formula:
∫

∂ωt

σ(x, t)n(x, t) ds =

∫

∂ω

σ(x, t) J(X, t)∇φ(X, t)−TN(X) dS.

Then one obtains from the balance of momentum the following differential equation in
Lagrangian coordinates:

ρ0(X)
∂2φ

∂t2
(X, t) − div P(X, t) = ρ0(X)F (X, t).

The balance of angular momentum is satisfied if and only if

S(X, t)T = S(X, t)
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with

S(X, t) = ∇φ(X, t)−1P(X, t) = J(X, t)∇φ(X, t)−1σ(x, t)∇φ(X, t)−T for x = φ(X, t),

the so-called second Piola Kirchhoff stress tensor.
The corresponding transformation of the tensors S 7→ σ, given by

σ(x, t) =
1

J(X, t)
∇φ(X, t)S(X, t)∇φ(X, t)T for x = φ(X, t)

is called the Piola transformation.

Remark: Other balance laws like the balance of energy will not be discussed here.

1.3 Constitutive Laws

The equations of motion do not yet completely describe the configuration of a body. Equa-
tions for the stress in form of a constitutive laws are necessary.

Two important special cases will be considered here:

1.3.1 Elastic Materials

A material is called elastic if there is a constitutive law of the form

S(X) = Ŝ(X,E(X)).

For the important sub-class of hyperelastic materials the constitutive law can be rep-
resented by an energy functional:

Ŝ(X,E) =
∂Ψ

∂E
(X,E),

where Ψ(X,E) is the so-called stored energy function.
A material is called linearly elastic if

Ψ(X,E) =
1

2

∑

ijkl

Cijkl(X)EijEkl,

where the so-called elastic coefficients (or elasticity coefficients) Cijkl(X) (which form the
so-called elasticity tensor) have the following properties:

Cijkl(X) = Cklij(X)

and
Cijkl(X) = Cjikl(X) = Cjilk(X).
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From these conditions it follows that only 21 coefficients can be chosen independently from
each other. For the corresponding constitutive law we obtain the linear relations:

Sij =
∑

kl

Cijkl(X)Ekl, (1.9)

which is called Hooke’s law.
An important special case of linearly elastic materials are the St.Venant-Kirchhoff ma-

terials (homogenous, isotropic, and linearly elastic materials), for which the constitutive
law has the form

S = λ trace(E) I + 2µE.

The parameters λ and µ are called Lamé coefficients. They are related to Young’s modulus
(or modulus of elasticity) E and Poisson’s ratio ν by

E =
µ(3λ + 2µ)

λ + µ
, ν =

λ

2(λ + µ)

and, vice versa

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
.

It can be shown by arguments from physics that:

0 < ν <
1

2
and E > 0.

These conditions are equivalent to

λ > 0 and µ > 0.

For St.Venant-Kirchhoff materials the stored energy function takes the form

Ψ(E) =
λ

2
(trace(E))2 + µ trace(E2),

so

Cijkl = λ δij δkl + µ (δik δjl + δil δjk).

1.3.2 Newtonian Fluids

Starting point is the following ansatz for the Cauchy stress tensor

σ = −p I + τ,

where p(x, t) denotes the pressure in the fluid at the position x and time t and τ depends
on the first spatial derivative of the velocity field v(x, t).
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For a parallel flow (in x1 direction) Newton postulated the linear relation

τ21 = µ
dv1

dx2

for the shear stress τ21. The coefficient µ is called the dynamic viscosity of the fluid.

Under reasonable assumptions it can be shown that this implies the following form for
τ :

τ = λ div v I + 2µ ε(v)

with

ε(v) = (ε(v)ij), ε(v)ij =
1

2

(

∂vi

∂xj

+
∂vj

∂xi

)

.

Observe that div v = trace ε(v) and the formal similarity to the constitutive law for St.
Venant-Kirchhoff materials.

Arguments from physics show that

µ ≥ 0 and µ̂ = λ +
2

3
µ ≥ 0.

The coefficient µ̂ is called bulk viscosity. In the following we will assume that µ̂ = 0, hence
λ = −2µ/3. Therefore

σ = −(p +
2µ

3
div v) I + 2µ ε(v).

For ρ = constant, µ = constant and with the help of (1.5) (div v = 0) the expressions
for the internal surface force can be further simplified:

div σ = − grad p + µ ∆v,

where ∆ denotes the Laplacian operator:

∆ =
3
∑

j=1

∂2

∂x2

j

.

1.4 Boundary Value and Initial-Boundary Value

Problems

For a complete description we need boundary conditions and for time-dependent problems
initial conditions.
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1.4.1 Elastostatics and Elastodynamics

Usually Lagrangian coordinates are used in elasticity.
In typical applications the surface force is prescribed on some part ΓN of the boundary

Γ = ∂Ω of Ω, given by its surface force density TN(x). This results in the boundary
condition

(∇φS) N = TN for all x ∈ ΓN , t > 0.

For the remaining part ΓD of the boundary we assume that the deformation is known.
This leads to the boundary condition

φ = φD for all X ∈ ΓD, t > 0.

As initial conditions usually the initial configuration and the initial velocity are pre-
scribed:

φ = φ0,
∂φ

∂t
= V0 for t = 0.

Hence we obtain the following initial-boundary value problem of elastodynamics:

ρ0

∂2φ

∂t2
− div(∇φS) = ρ0 F in Ω, t > 0,

S = Ŝ(E) in Ω, t > 0,

E =
1

2
(∇φT∇φ − I) in Ω, t > 0,

φ = φD on ΓD, t > 0,

(∇φS) N = TN on ΓN , t > 0,

φ = φ0,
∂φ

∂t
= V0 in Ω, t = 0.

The corresponding time-independent problem leads to the following boundary value
problem of elastostatics:

− div(∇φS) = ρ0 F in Ω,

S = Ŝ(E) in Ω,

E =
1

2
(∇φT∇φ − I) in Ω,

φ = φD on ΓD,

(∇φS) N = TN on ΓN .
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1.4.2 Linear(ized) Elasticity

For small displacements it is justified

• not to distinguish between the Eulerian and the Lagrangian description (in the sequel
we will use the Eulerian description), and

• to replace the strain tensor by the linearized strain tensor ε, given by

εij(u) =
1

2

(

∂uj

∂xi

+
∂ui

∂xj

)

.

Then Hooke’s law (1.9) can be written in the form

σij =
∑

kl

Cijkl εkl

or, in short,
σ = C ε.

We obtain the following initial-boundary value problem of linear(ized) elastodynamics:

ρ0

∂2u

∂t2
− div σ = ρ0 f in Ω, t > 0,

σ = C ε in Ω, t > 0,

ε =
1

2
(∇uT + ∇u) in Ω, t > 0,

u = uD on ΓD, t > 0,

σ n = tN on ΓN , t > 0,

u = u0,
∂u

∂t
= v0 in Ω, t = 0,

and the following boundary value problem of linear(ized) elastostatics:

− div σ = ρ0 f in Ω,

σ = C ε in Ω,

ε =
1

2
(∇uT + ∇u) in Ω,

u = uD on ΓD,

σ n = tN on ΓN .
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For St. Venant-Kirchhoff materials we obtain, in particular,

σ = λ trace(ε) I + 2 µ ε

and from constitutive law and the linearized strain-displacement relations it follows that:

− div σ = −2 µ div ε(u) − λ grad div u

= −µ ∆u − (λ + µ) grad div u.

The corresponding second order differential equations for the displacement u are called
Lamé (or Cauchy-Navier) equations.

1.4.3 The Navier-Stokes Equations

Usually Eulerian coordinates are used in fluid mechanics. The unknown functions are, e.g.,
the velocity v(x, t) and the pressure p(x, t).

In typical applications the surface force is prescribed on some part ΓN of the boundary
Γ = ∂Ω of Ω, given by its surface force density tN (x). This results in the boundary
condition

σn = tN for all x ∈ ΓN , t > 0.

For the remaining part ΓD of the boundary we assume that the velocity is known. This
leads to the boundary condition

v = vD for all x ∈ ΓD, t > 0.

As initial condition usually the initial velocity is prescribed:

v = v0 for t = 0.

For the case ρ = constant and µ = constant one obtains the equations of motion in
conservative form

∂

∂t
(ρvi) + div(ρviv) = −

∂p

∂xi

+ µ∆vi + ρfi, (1.10)

or in convective form

ρ
∂v

∂t
+ ρ (v · grad)v = − grad p + µ ∆v + ρf (1.11)

or, after dividing by ρ:

∂v

∂t
+ (v · grad)v = −

1

ρ
grad p + ν∆v + f (1.12)

with ν = µ/ρ, the kinematic viscosity. The equations (1.10) or (1.11) or (1.12) are called
the Navier-Stokes equations.
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In summary, one obtains the following initial-boundary value problem of fluid mechan-
ics:

∂v

∂t
+ (v · grad)v − ν ∆v +

1

ρ
grad p = f in Ω, t > 0,

div v = 0 in Ω, t > 0,

v = vD on ΓD, t > 0,

σ n = tN on ΓN , t > 0,

v = v0 in Ω, t = 0,

and, for the steady state case, the corresponding boundary value problem:

(v · grad)v − ν ∆u +
1

ρ
grad p = f in Ω,

div v = 0 in Ω,

v = vD on ΓD,

σ n = tN on ΓN .

Dimensional analysis:

Starting from reference values L∗, t∗, U∗ and p∗ for the length, the time, the velocity and
the pressure new variables are introduced by

x′

i =
xi

L∗
, t′i =

t

t∗
, v′

i =
vi

U∗
, p′ =

p

p∗
.

By transformation of variables one obtains:

ρU∗

t∗
∂v′

i

∂t′
+

ρ(U∗)2

L∗

N
∑

j=1

v′

j

∂v′

i

x′

j

= −
p∗

L∗

∂p′

∂x′

i

+
µU∗

(L∗)2
∆v′

i + ρf,

or, after multiplication by L∗/(ρ(U∗)2)

L∗

t∗U∗

∂v′

i

∂t′
+ 1 ·

N
∑

j=1

v′

j

∂v′

i

x′

j

= −
p∗

ρ(U∗)2

∂p′

∂x′

i

+
µ

ρL∗U∗
∆v′

i + f ′

with f ′ = L∗/(U∗)2 · f . With the setting t∗ = L∗/U∗, p∗ = ρ(U∗)2 and

Re =
ρL∗U∗

µ
=

L∗U∗

ν
,



16 CHAPTER 1. MODELS

the so-called Reynolds number, one obtains

∂vi

∂t
+

N
∑

j=1

vj

∂vi

xj

= −
∂p

∂xi

+
1

Re
∆vi + f. (1.13)

For Re ≪ 1 the viscosity of the flow dominates, for Re ≫ 1 the flow is dominantly
convective. For Re → ∞ one formally obtains the so-called Euler equations:

∂v

∂t
+ (v · grad)v + grad p = f.

If the transformed equations are multiplied by (L∗)2/(µU∗), one obtains

ρ(L∗)2

µt∗
∂v′

i

∂t′
+

ρL∗U∗

µ

N
∑

j=1

v′

j

∂v′

i

x′

j

= −
p∗L∗

µU∗

∂p′

∂x′

i

+ 1 · ∆v′

i + f ′

with f ′ = ρ(L∗)2f/(µU∗). With the setting t∗ = (ρ(U∗)2)/µ, p∗ = (µU∗)/L∗ it follows that

∂vi

∂t
+ Re

N
∑

j=1

vj

∂vi

xj

= −
∂p

∂xi

+ ∆vi + f. (1.14)

In this formulation one obtains for Re = 0 the so-called Stokes equations:

∂v

∂t
− ∆v + grad p = f. (1.15)


