T UTORIAL

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerical Methods for Elliptic Problems"

Tutorial 10 Tuesday, 16 June 2009 (Time : $10^{15}-11^{45} \quad$ Room : T 911)

2.9 Variational Crimes

Consider the one-dimensional BVP to find $u \in V_{g}=V_{0}=H_{0}^{1}(0,1)$:

$$
\begin{equation*}
\int_{0}^{1} \lambda(x) u^{\prime}(x) v^{\prime}(x) d x=\int_{0}^{1} f(x) v(x) d x \quad \forall v \in V_{0} \tag{2.48}
\end{equation*}
$$

with

$$
f \in L^{2}(0,1), \quad \lambda \in L^{\infty}(0,1), \quad \text { and } \quad \lambda(x) \geq \underline{\lambda}>0 \quad \forall x \in(0,1) \text { a.e. }
$$

Let $\mathcal{F}(\Delta)=\mathcal{P}_{1}$) and assume an equidistant grid ($x_{i}=i h, i=\overline{0, n+1}, h=1 /(n+1)$, $\left.\delta_{r}=\left(x_{r-1}, x_{r}\right)\right)$. Now we approximate the bilinear form $a(\cdot, \cdot)$ and the linear form $\langle F, \cdot\rangle$ defined in (2.48) using numerical integration, namely the midpoint rule:

$$
\begin{equation*}
a_{h}\left(u_{h}, v_{h}\right)=\sum_{r=1}^{n+1} h \lambda\left(x_{r}^{\star}\right) u_{h}^{\prime}\left(x_{r}^{\star}\right) v_{h}^{\prime}\left(x_{r}^{\star}\right) \quad \text { and } \quad\left\langle F_{h}, v_{h}\right\rangle_{h}=\sum_{r=1}^{n+1} h f\left(x_{r}^{\star}\right) v_{h}\left(x_{r}^{\star}\right), \tag{2.49}
\end{equation*}
$$

where $x_{r}^{\star}=x_{\delta_{r}}\left(\frac{1}{2}\right)=x_{r-1}+\frac{1}{2} h$. To ensure that these expressions are well-defined we assume (for simplicity) that

$$
\lambda, f \in W_{\infty}^{1}(0,1)
$$

Let \widetilde{u}_{h} be such that $a_{h}\left(\widetilde{u}_{h}, v_{h}\right)=\left\langle F_{h}, v_{h}\right\rangle_{h}$ for all $v_{h} \in V_{0 h}$. We are interested whether the error $\left\|u-\widetilde{u}_{h}\right\|_{H^{1}(0,1)}$ obeys the same asymptotics with respect to h than if we compute $a(\cdot, \cdot)$ and $\langle F, \cdot\rangle$ exactly. This investigation will be done using Strang's first lemma. Throughout we choose the norm $\|\cdot\|_{V_{0}}:=|\cdot|_{H^{1}(0,1)}$.

45 Show that the bilinear and linear forms above fulfill the standard assumptions (33) and the additional assumption (34) from the lecture notes; the latter is called uniform ellipticity since

$$
\exists \mu_{3}>0: a_{h}\left(v_{h}, v_{h}\right) \geq \mu_{3}\left\|v_{h}\right\|_{V_{0}}^{2}
$$

must hold with $\mu_{3} \neq \mu_{3}(h)$!
Hint: For the uniform ellipticity, use that $\lambda \geq \underline{\lambda}$ and that the midpoint rule is exact for some (which?) polynomials.

We can now apply Strang's first lemma which yields

$$
\begin{aligned}
\left\|u-\widetilde{u}_{h}\right\|_{V_{0}} \leq c\{ & \inf _{v_{h} \in V_{0}}\left[\left\|u-v_{h}\right\|_{V_{0}}+\sup _{w_{h} \in V_{0 h}} \frac{\left|a\left(v_{h}, w_{h}\right)-a_{h}\left(v_{h}, w_{h}\right)\right|}{\left\|w_{h}\right\|_{V_{0}}}\right]+ \\
& \left.+\sup _{w_{h} \in V_{0 h}} \frac{\left|\left\langle F, v_{h}\right\rangle-\left\langle F_{h}, v_{h}\right\rangle_{h}\right|}{\left\|w_{h}\right\|_{V_{0}}}\right\}
\end{aligned}
$$

46 For $v_{h}, w_{h} \in V_{0 h}$ prove that

$$
\left|a\left(v_{h}, w_{h}\right)-a_{h}\left(v_{h}, w_{h}\right)\right| \leq c h|\lambda|_{W_{\infty}^{1}(0,1)}\left\|v_{h}\right\|_{V_{0}}\left\|w_{h}\right\|_{V_{0}} .
$$

Hint: Treat each element separately and use that $v_{h}^{\prime}, w_{h}^{\prime}$ are constant on each element, so that we are left with $\left|\int_{\delta_{r}} \lambda(x) d x-h \lambda\left(x_{r}^{*}\right)\right|$. To get an error bound for this term, use Bramble-Hilbert on the reference element.

47 For $\varphi \in H^{1}\left(\delta_{r}\right)$ prove that

$$
\left|\int_{\delta_{r}} \varphi(x) d x-h \varphi\left(x_{r}^{*}\right)\right| \leq c h^{3 / 2}|\varphi|_{H^{1}\left(\delta_{r}\right)}
$$

similarly to the exercises in Tutorial 08. Then set $\varphi=f w_{h}$ and show that

$$
\left|\left\langle F, v_{h}\right\rangle-\left\langle F_{h}, v_{h}\right\rangle_{h}\right| \leq c h\|f\|_{W^{1, \infty}(0,1)}\left\|w_{h}\right\|_{V_{0}}
$$

48 Show that if $u \in H^{2}(0,1)$ then

$$
\left\|u-\widetilde{u}_{h}\right\|_{V_{0}} \leq \operatorname{ch}\left\{\|u\|_{H^{2}(0,1)}+|\lambda|_{W_{\infty}^{1}(0,1)}+\|f\|_{W_{\infty}^{1}}(0,1)\right\} .
$$

Hint: In the result of Strang's first lemma, choose $v_{h}=u_{h}$ where

$$
a\left(u_{h}, v_{h}\right)=\left\langle F, v_{h}\right\rangle \quad \forall v_{h} \in V_{0 h} .
$$

Show and use that

$$
\left\|u_{h}\right\|_{V_{0}} \leq c(\lambda)\|u\|_{V_{0}} .
$$

49 Can we get an estimate similar to 48 if λ and f are only piecewise smooth (e.g., if they have a jump across $x=1 / 2$)?
$50^{\star \star}$ Consider the problem to find $u \in V_{0}:=H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda(x) \nabla u(x) \cdot \nabla v(x) d x=\int_{\Omega} f(x) v(x) d x \quad \forall v \in V_{0}
$$

with $\Omega \subset \mathbb{R}^{2}$. For a discretization we use linear triangular elements and we approximate the integrals with a quadrature rule. Which such rule and which assumptions on the data λ and f are sufficient to conclude an estimate of the form $\left\|u-\widetilde{u}_{h}\right\|_{V_{0}} \leq c(u, f, \lambda) h ?$
The following exercise treats the non-conforming case.
51 Assume the standard assumptions (33), the additional assumptions (39) from the lecture notes, and that $a(\cdot, \cdot)$ is symmetric. Suppose $u \in V_{g}, \tilde{u}_{h} \in V_{g h}$ fulfill

$$
a(u, v)=\langle F, v\rangle \quad \forall v \in V_{0}, \quad a_{h}\left(\tilde{u}_{h}, v_{h}\right)=\left\langle F, v_{h}\right\rangle \quad \forall v_{h} \in V_{0 h} .
$$

Show that

$$
\begin{equation*}
\left\|u-\tilde{u}_{h}\right\|_{h} \leq \inf _{v_{h} \in V_{g h}}\left\{\left\|u-v_{h}\right\|_{h}+\sup _{w_{h} \in V_{0 h} \backslash\{0\}} \frac{a_{h}\left(u-\tilde{u}_{h}, w_{h}\right)}{\left\|w_{h}\right\|_{h}}\right\}, \tag{2.50}
\end{equation*}
$$

where $\|\cdot\|_{h}:=\sqrt{a_{h}(\cdot, \cdot)}$.

