T UTORIAL

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerical Methods for Elliptic Problems"

Tutorial 8 Tuesday, 19 May 2009 (Time : 10 15 - 1145 Room : T 911)

2.6 Error Estimates

35 Prove Poincaré's inequality, i.e., there exists a positive constant \bar{c}_{P} such that

$$
\begin{equation*}
\int_{\Delta}|u|^{p} d x \leq \bar{c}_{P}\left\{\left|\int_{\Delta} u d x\right|^{p}+\int_{\Delta}|\nabla u|^{p} d x\right\} \quad \forall u \in W_{p}^{1}(\Delta), \tag{2.36}
\end{equation*}
$$

where $p \in \mathbb{N}$ is a given. Hint: Apply Sobolev's norm equivalence Theorem 1.3.
36 Let $f \in H^{3}(\Delta)$ be a given fuction where Δ denotes the reference triangle. Show the existence of a constant $c>0$ satisfying the estimate

$$
\begin{equation*}
\left|\int_{\Delta} f(\xi, \eta) d \xi d \eta-\frac{1}{2} \sum_{i=1}^{3} \alpha_{i} f\left(\xi_{i}, \eta_{i}\right)\right| \leq c|f|_{3, \Delta} \tag{2.37}
\end{equation*}
$$

where the weights α_{i} and the integration points $\left(\xi_{i}, \eta_{i}\right)(i=1,2,3)$ are chosen according to Exercises 26 and 27 .

37 Let the bounded Lipschitz domain $\Omega \subset \mathbb{R}^{2}$ be defined by a regular triangulation $\tau_{h}=\left\{\delta_{r}: r \in R_{h}\right\}$ according to Def. 2.3. Let $f \in H^{2}(\Omega)$ be a given function. Show that there exists a positive h-independent constant c satisfying the error estimate

$$
\begin{equation*}
\left|\int_{\Omega} f(x) d x-\sum_{r \in R_{h}}\right| \delta_{r}\left|f\left(x_{\star}^{(r)}\right)\right| \leq c h^{2} \sum_{r \in R_{h}}|f|_{2, \delta_{r}}, \tag{2.38}
\end{equation*}
$$

where $\left|\delta_{r}\right|=\operatorname{meas}\left(\delta_{r}\right)$ and $x_{\star}^{(r)}=x_{\delta_{r}}(1 / 3,1 / 3)$ denote the area and the center of mass of the triangle δ_{r}.
38^{\star} Using technical tricks one can show that

$$
\begin{equation*}
\left|\int_{\Omega} f(x) d x-\sum_{r \in R_{h}}\right| \delta_{r}\left|f\left(x_{\star}^{(r)}\right)\right| \leq c h^{2}|f|_{2, \Omega}, \tag{2.39}
\end{equation*}
$$

(which does not directly follow from (2.38); a proof is found in [Ciralet]). Show that estimate (2.39) cannot be further improved with respect to the power in h. Hint: Choose a simple function f, depending only on one of the coordinates, a simple mesh of the unit square, and compute the error.

39 Show that for $d=1: \Omega=(0,1), k=1: \mathcal{F}(\Delta)=\mathcal{P}_{1}(\Delta)$, and $u(x)=x^{2}$ there holds

$$
\begin{equation*}
\inf _{v_{h} \in V_{h}} \int_{0}^{1}\left|u^{\prime}(x)-v_{h}^{\prime}(x)\right|^{2} d x=\frac{1}{3} h^{2} \tag{2.40}
\end{equation*}
$$

where $V_{h}=\operatorname{span}\left\{p^{(i)}: i=0,1, \ldots, n\right\}$ is defined using continuous affine linear finite elements on the mesh $0=x^{(0)}<\ldots<x^{(i)}=i h<\ldots<x^{(n)}=1, h=1 / n$.
40^{\star} Under the assumptions 1 and 2 of the Approximation Theorem 2.6, prove the completeness of the FE-spaces $\left\{V_{h}\right\}_{h \in \Theta}$ in $V=H^{1}(\Omega)$, i.e.,

$$
\begin{equation*}
\lim _{h \rightarrow 0} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|=0 \quad \forall u \in V . \tag{2.41}
\end{equation*}
$$

