T U T ORIAL

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerical Methods for Elliptic Problems"

Tutorial 6 Tuesday, 5 May 2009 (Time : $10^{15}-11^{\underline{45} \quad \text { Room : T 911) }}$

2.4 Generation of the Finite Elements Equations

26 Show that the integration rule

$$
\begin{equation*}
\int_{\Delta} f(\xi, \eta) d \xi d \eta \approx \frac{1}{2}\left\{\alpha_{1} f\left(\xi_{1}, \eta_{1}\right)+\alpha_{2} f\left(\xi_{2}, \eta_{2}\right)+\alpha_{3} f\left(\xi_{3}, \eta_{3}\right)\right\} \tag{2.22}
\end{equation*}
$$

integrates quadratic polynomials exactly, if the the weights α_{i} and the integration points $\left(\xi_{i}, \eta_{i}\right)$ are choosen as follows: $\alpha_{1}=\alpha_{2}=\alpha_{3}=1 / 3$ and $\left(\xi_{1}, \eta_{1}\right)=(1 / 2,0)$, $\left(\xi_{2}, \eta_{2}\right)=(1 / 2,1 / 2),\left(\xi_{3}, \eta_{3}\right)=(0,1 / 2)$.

27 Show that the integration rule

$$
\begin{equation*}
\int_{\Delta} f(\xi, \eta) d \xi d \eta \approx \frac{1}{2}\left\{\alpha_{1} f\left(\xi_{1}, \eta_{1}\right)+\alpha_{2} f\left(\xi_{2}, \eta_{2}\right)+\alpha_{3} f\left(\xi_{3}, \eta_{3}\right)\right\} \tag{2.23}
\end{equation*}
$$

integrates quadratic polynomials exactly, if the the weights α_{i} and the integration points $\left(\xi_{i}, \eta_{i}\right)$ are choosen as follows: $\alpha_{1}=\alpha_{2}=\alpha_{3}=1 / 3$ and $\left(\xi_{1}, \eta_{1}\right)=(1 / 6,1 / 6)$, $\left(\xi_{2}, \eta_{2}\right)=(4 / 6,1 / 6),\left(\xi_{3}, \eta_{3}\right)=(1 / 6,4 / 6)$.

28 Generate the system of finite element equations for the mixed boundary value problem

$$
\begin{align*}
-\Delta u\left(x_{1}, x_{2}\right) & =0 \quad \forall\left(x_{1}, x_{2}\right) \in \Omega:=(0,1) \times(0,1) \tag{2.24}\\
u\left(x_{1}, 0\right) & =0 \quad \forall x_{1} \in[0,1] \tag{2.25}\\
u\left(0, x_{2}\right) & =0 \quad \forall x_{2} \in[0,1] \tag{2.26}\\
\frac{\partial u}{\partial x_{2}}\left(x_{1}, 1\right) & =x_{1} \quad \forall x_{2} \in(0,1] \tag{2.27}\\
\frac{\partial u}{\partial x_{1}}\left(1, x_{2}\right) & =x_{2} \quad \forall x_{2} \in(0,1] \tag{2.28}
\end{align*}
$$

using linear finite elements on the triangulation shown in the figure below. Solve the system of equations !

29* Extend the existing finite element software from the tutorials "Numerics of Partial Differential Equations" to the 2D, elliptic, second-order BVP (the heat conduction problem) given in Section 2.2 .1 of our lecture! Use linear triangular finite elements (Courant's elements)! Choose a suitable solver for solving the linear FE-system $K_{h} \underline{u}_{h}=\underline{u}_{h}$ supporting the format, in which the sparse system matrix K_{h} is stored.
30^{\star} Solve the "Chip" problem with your finite element code developed in Exercise 29 !

