"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerical Methods for Elliptic Problems"

2 The Galerkin FEM

2.1 The Galerkin-Ritz method

22 Consider the following variational problem: Find $u \in V_{g}=V_{0}=H_{0}^{1}(0,1)$ such that

$$
\begin{equation*}
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x=\int_{0}^{1} f(x) v(x) d x \quad \forall v \in V_{0} \tag{2.20}
\end{equation*}
$$

Solve this variational problem by Galerkin's method using the basis

$$
V_{0 h}=V_{0 n}=\operatorname{span}\left\{x(1-x), x^{2}(1-x), \ldots, x^{n-1}(1-x)\right\}
$$

where the right-hand side is given by $f(x)=\cos (k \pi x), k=l+1$ and l is the last digit from your student code. Compute the stifness matrix K_{h} analytically and solve the linear system $K_{h} \underline{u}_{h}=\underline{f}_{h}$ numerically using Gaussian elimination (using matlab, C, or anything else). Consider n to be $2,4,8,10,50,100$.

2.2 Mesh generation and refinement

23^{\star} Consider a plane domain (2D) meshed into triangles. Such a mesh can be stored in the *.net format (see Silde 10). Implement an algorithm which inputs a given mesh file coarse.net and outputs the file fine.net containing the refinement of the coarse triangulation (each coarse triangle is subdivided into four fine triangles).
$24^{\star \star}$ Modify the above algorithm such that one can select individual elements for refinement. The output mesh should meet the following requirements:

- selected elements are divided into four elements,
- neighboring elements that are not selected are divided into two or more elements (in order to guarantee the conformity),
- the remaining elements are not refined at all.

Later on, this algorithm can be used for an adaptive (a posteriori) error estimator as a part of a finite element program.

2.3 Mapping reference to physical element

24 Let δ_{r} denote a triangle, h_{r} its longest side and θ_{r} its smallest angle. Furthermore, let $\left|J_{\delta_{r}}\right|$ denote the Jacobi determinant of the affine linear mapping from the reference element to δ_{r} (see also your lecture notes). Show the inequality

$$
\begin{equation*}
\frac{\alpha_{0}^{2}}{2} \sin \theta_{r} h_{r}^{2} \leq\left|J_{\delta_{r}}\right| \leq \frac{\sqrt{3}}{2} h_{r}^{2} \tag{2.21}
\end{equation*}
$$

where the shortest side is of length $\alpha_{0} h_{r}$.

