"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerical Methods for Elliptic Problems"

Tutorial 4 Thursday, 2 April 2009 (Time : 10^{15} - 11^{45} Room : T 911)

1.4 Electromagnetic Fields

17 Show the integral identity

$$
\int_{\Omega} \operatorname{curl}(u) \cdot v d x=\int_{\Omega} u \cdot \operatorname{curl}(v) d x+\int_{\Gamma} u \cdot(v \times n) d s
$$

for all vector functions $u, v \in\left[C^{1}(\bar{\Omega})\right]^{3}$, where n denotes the external unit normal on the boundary $\Gamma=\partial \Omega$ of the bounded and sufficiently smooth domain $\Omega \subset \mathbb{R}^{3}$!

18 Let us consider the following variational problem: Find a vector function $u \in V_{g}=$ $V_{0}:=H_{0}(\operatorname{curl}, \Omega)=H_{0}($ curl $)$ satisfying

$$
\begin{equation*}
\int_{\Omega}\left[\frac{1}{\mu} \operatorname{curl}(u) \cdot \operatorname{curl}(v)+\sigma u \cdot v\right] d x=\int_{\Omega}[J \cdot v+M \cdot \operatorname{curl}(v)] d x \quad \forall v \in V_{0} \tag{1.14}
\end{equation*}
$$

where $J, M \in\left[L_{2}(\Omega)\right]^{3}$ are given vector functions and $\mu, \sigma \in L_{\infty}(\Omega)$ are given uniformly positive and bounded scalar functions, i.e., there exist positive constants $\mu, \bar{\mu}, \underline{\sigma}$ and $\bar{\sigma}$, satisfying $\mu \leq \mu(x) \leq \bar{\mu}$ and $\underline{\sigma} \leq \sigma(x) \leq \bar{\sigma}$ for almost all $x \in \Omega$. Prove that these assumptions already guarantee the existence of a unique solution of the variational problem (1.14).
Which solvability condition must the right hand side fulfill in the case $\sigma=0$ (magnetostatics)?

1.5 Mixed Variational Formulations

Hint: Use the slides from http://www.numa.uni-linz.ac.at/Teaching/LVA/2009s/ NuEPDE/ !!!

19* Let us consider the solution $(w, \theta) \in V:=H_{0}^{1}(\Omega) \times\left(H_{0}^{1}(\Omega)\right)^{2}$ and $\gamma \in Q:=$ $H^{-1}(\operatorname{div}, \Omega)$ of the mixed variational problem

$$
\begin{align*}
a((w, \theta),(v, \phi))+b((v, \phi), \gamma) & =\langle f,(v, \phi)\rangle & & \forall(v, \phi) \in V, \tag{1.15}\\
b((w, \theta), \eta) & =\langle g, \eta\rangle & & \forall \eta \in Q, \tag{1.16}
\end{align*}
$$

where

$$
\begin{aligned}
a((w, \theta),(v, \phi)) & :=a(\theta, \phi)=\frac{1}{6} \int_{\Omega}\left[\mu \sum_{i, j=1}^{2} \varepsilon_{i j}(\theta) \varepsilon_{i j}(\phi)+\frac{\lambda \mu}{\lambda+2 \mu} \operatorname{div}(\theta) \operatorname{div}(\phi)\right] d x d y \\
b((w, \theta), \eta) & :=\langle\nabla w-\theta, \eta\rangle_{Q^{*} \times Q}=(\nabla w-\theta, \eta)_{0} \\
\langle f,(v, \phi)\rangle & :=\langle f, v\rangle=(f, v)_{0} \\
g & :=0 \\
H^{-1}(\operatorname{div}, \Omega) & :=\left\{\eta \in\left(H^{-1}(\Omega)\right)^{2}: \operatorname{div}(\eta) \in H^{-1}(\Omega)\right\} .
\end{aligned}
$$

Prove that if (w, θ) is a sufficiently smooth solution of problem (1.15)-(1.16), then w satisfies the first biharmonic BVP!

20 Formulate the mixed variational formulation of the mixed BVP

$$
-\Delta u=f \text { in } \Omega, \quad u=0 \text { on } \Gamma_{1}, \quad \frac{\partial u}{\partial n}=0 \text { on } \Gamma_{2}
$$

for Poisson's equation with $f \in L^{2}(\Omega), \Gamma_{1} \cap \Gamma_{2}=\emptyset$, and $\Gamma_{1} \cup \Gamma_{2}=\Gamma$!
21 Let us consider the following mixed formulation: Find $(u, p) \in H_{0}(\operatorname{curl}) \times H_{0}^{1}(\Omega)$ such that

$$
\begin{align*}
\int_{\Omega} \nu \operatorname{curl}(u) \cdot \operatorname{curl}(v) d x+\int_{\Omega} v \cdot \nabla p d x & =\int_{\Omega} J \cdot v d x \forall v \in H_{0}(\text { curl }) \tag{1.17}\\
\int_{\Omega} u \cdot \nabla q d x & =0 \forall q \in H_{0}^{1}(\Omega) \tag{1.18}
\end{align*}
$$

where $\nu \in L_{\infty}(\Omega)$ is a uniformly positive function and $J \in\left(L_{2}(\Omega)\right)^{3}$ is weakly divergence-free, i.e.

$$
\begin{equation*}
\int_{\Omega} J \cdot \nabla q d x=0 \quad \forall q \in H_{0}^{1}(\Omega) \tag{1.19}
\end{equation*}
$$

Show that p is identical to the zero function! Therefore u is a weakly divergence-free solution of the magnetostatic problem (1.14) with $\nu=1 / \mu, \sigma=0, M=0$.
Hint: $q \in H_{0}^{1}(\Omega)$ implies that the tangential derivative $\nabla q \times n$ vanishes on Γ.

