
NuEPDE (Numerics of elliptic problems) SS 2009

T U T O R I A L

“Numerical methods for the solution
of elliptic partial differential equations”

to the lecture

“Numerics of elliptic problems”

Tutorial 1 Thursday, 12 March 2009 (Time: 10:15 - 11:45, Room : T 911 )

1 Variational formulation of multi-dimensional ellip-

tic BVP

1.1 Scalar elliptic BVP of the second order.

© In the lectures (Section 1.2.1), we discussed the BVP (classical formulation)

Search u ∈ X := C2(Ω) ∩ C1(Ω ∪ Γ2 ∪ Γ3) ∩ C(Ω ∪ Γ1) :

−
m∑

i,j=1

∂
∂xi

(aij(x) ∂u
∂xj

) +
m∑

i=1

ai(x) ∂u
∂xi

+ a(x)u(x) = f(x), x ∈ Ω

+BC: • u(x) = g1(x), x ∈ Γ1

• ∂u
∂N

:=
m∑

i,j=1

aij(x)∂u(x)
∂xj

ni(x) = g2(x), x ∈ Γ2

• ∂u
∂N

+ α(x)u(x) = g3(x)︸ ︷︷ ︸
α(x)uA(x)

, x ∈ Γ3

(1.1)

and derived its variational formulation

Search u ∈ Vg : a(u, v) =< F, v > ∀v ∈ V0

with

a(u, v) :=
∫
Ω

(
m∑

i,j=1

aij
∂u
∂xj

∂v
∂xi

+
m∑

i=1

ai
∂u
∂xi

v + auv) dx +
∫
Γ3

αuv ds,

< F, v > :=
∫
Ω

fv dx +
∫
Γ2

g2v ds +
∫
Γ3

g3v ds

Vg := {v ∈ V = W 1
2 (Ω) : v = g1 on Γ1}

V0 := {v ∈ V : v = 0 on Γ1}

(1.2)
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under the assumptions

1) aij, ai, a ∈ L∞(Ω), α ∈ L∞(Γ3)

2) f ∈ L2(Ω), gi ∈ L2(Γi), i = 2, 3

3) g1 ∈ H
1
2 (Γ1), i.e., ∃g̃1 ∈ H1(Ω) : g̃1|Γ1 = g1.

4) Ω ⊂ Rm(bounded) : Γ = ∂Ω ∈ C0,1 (Lipschitz domain)

5) uniform ellipticity:
m∑

i,j=1

aij(x)ξiξj ≥ µ̄1|ξ|2 ∀ξ ∈ Rm

aij(x) = aji(x) ∀i, j = 1, m

∀ a.e. x ∈ Ω.



(1.3)

01 Formulate the classical assumptions which we have to impose on the data
{ aij, ai, a, α, f, gi, Ω resp. ∂Ω } for (1.1) !

02 Provide sufficient conditions in order to ensure that a generalized solution
u ∈ Vg ∩X ∩W 2

2 (Ω) of (**) is also a solution of (*) in the classical sense !

(*)


Search u ∈ X = C2(Ω) ∩ C(Ω̄) :
−∆u(x) = f(x), x ∈ Ω ⊂ Rm (bounded),
u(x) = g(x), x ∈ Γ = ∂Ω

?⇓⇑?

(**) 
Search u ∈ Vg = {v ∈ V = H1(Ω) : v = g on Γ} :∫
Ω

∇T u∇v dx

︸ ︷︷ ︸
=a(u,v)

=

∫
Ω

fv dx

︸ ︷︷ ︸
=<F,v>

∀v ∈ V0 =
o

H1(Ω) =
o

W1
2(Ω)

03 Provide sufficient conditions in order to ensure that a generalized solution u ∈
Vg ∩X ∩W 2

2 (Ω) of (1.2) is also a solution of (1.1) in the classical sense !

04 Show that in the following cases a) and b) the assumption of the Lax-Milgram-
Theorem are satisfied, and derive µ1 and µ2 !

a) In addition to (1.3) the following assumptions hold:
ai = 0, a(x) ≥ 0 for almost all x ∈ Ω, α(x) ≥ 0 for almost all x ∈ Γ3,
measm−1(Γ1) > 0.

b) In addition to (1.3) the following assumptions hold:
ai = 0, a = 0, α(x) ≥ α = const > 0 for almost all x ∈ Γ3, measm−1(Γ3) > 0,
Γ1 = ∅.

05 In addition to the assumption (1.3) let us assume that a(x) ≥ a = const >
0 for almost all x ∈ Ω, Γ1 = Γ3 = ∅, and ai 6≡ 0. Provide sufficient conditions
for the coefficients ai such that the assumptions of the Lax-Milgram-Theorem are
satisfied.
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© Hint:

For estimating the convection term
m∑

i=1

∫
Ω

ai
∂u
∂xi

v dx, make use of the ε-inequality

|ab| ≤ 1

2ε
a2 +

ε

2
b2, ∀a, b ∈ R1 ∀ε > 0 !

06∗ Derive the variational formulation for the pure Neumann-problem for the Poisson
equation

−∆u(x) = f(x), ∀x ∈ Ω and
∂u

∂n
(x) = 0, ∀x ∈ Γ = ∂Ω, (1.4)

and discuss the question of the existence and the uniqueness of the generalized
solution of the pure Neumann-problem (1.4) !

© Hint:
Obviously, u(x) + c with arbitrary constant c ∈ R1 solves (1.4) provided that u is
the solution of the BVP (1.4). There are the following ways to analyze the existence
properties:

1) Set up the variational formulation in V = H1(Ω) and apply Fredholm’s Theo-
ry !

2) Set up the variational formulation in the factor-space V = H1(Ω)|ker with
ker= {c : c ∈ R1} = R1 and apply the Lax-Milgram-Theorem !

07∗ Derive the variational formulation of the Dirichlet problem for the Helmholtz equa-
tion

−∆u(x)− ω2u(x) = f(x), ∀x ∈ Ω and u(x) = 0, ∀x ∈ Γ = ∂Ω, (1.5)

Then discuss the problem of the existence and the uniqueness of the generalized
solution of the BVP (1.5), where ω2 is a given positive constant.
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