T U T O R I A L

"Numerical methods for the solution of elliptic partial differential equations"

to the lecture
"Numerics of elliptic problems"

Tutorial 1 Thursday, 12 March 2009 (Time: 10:15-11:45, Room : T 911)

1 Variational formulation of multi-dimensional elliptic BVP

1.1 Scalar elliptic BVP of the second order.

In the lectures (Section 1.2.1), we discussed the BVP (classical formulation)

$$
\begin{align*}
& \text { Search } u \in X:=C^{2}(\Omega) \cap C^{1}\left(\Omega \cup \Gamma_{2} \cup \Gamma_{3}\right) \cap C\left(\Omega \cup \Gamma_{1}\right): \tag{1.1}\\
& -\sum_{i, j=1}^{m} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+\sum_{i=1}^{m} a_{i}(x) \frac{\partial u}{\partial x_{i}}+a(x) u(x)=f(x), x \in \Omega \\
& +\mathrm{BC}: ~ \bullet ~ \\
& (x)=g_{1}(x), x \in \Gamma_{1} \\
& \bullet \quad \frac{\partial u}{\partial N}:=\sum_{i, j=1}^{m} a_{i j}(x) \frac{\partial u(x)}{\partial x_{j}} n_{i}(x)=g_{2}(x), x \in \Gamma_{2} \\
& \bullet \quad \frac{\partial u}{\partial N}+\alpha(x) u(x)=\underbrace{g_{3}(x)}_{\alpha(x) u_{A}(x)}, x \in \Gamma_{3}
\end{align*}
$$

and derived its variational formulation

$$
\begin{align*}
& \text { Search } u \in V_{g}: a(u, v)=<F, v>\quad \forall v \in V_{0} \tag{1.2}\\
& \text { with } \\
& \begin{array}{l}
a(u, v) \quad:=\int_{\Omega}\left(\sum_{i, j=1}^{m} a_{i j} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}}+\sum_{i=1}^{m} a_{i} \frac{\partial u}{\partial x_{i}} v+a u v\right) d x+\int_{\Gamma_{3}} \alpha u v d s, \\
<F, v>:=\int_{\Omega} f v d x+\int_{\Gamma_{2}} g_{2} v d s+\int_{\Gamma_{3}} g_{3} v d s \\
V_{g}:=\left\{v \in V=W_{2}^{1}(\Omega): v=g_{1} \text { on } \Gamma_{1}\right\} \\
V_{0}:=\left\{v \in V: v=0 \text { on } \Gamma_{1}\right\}
\end{array}
\end{align*}
$$

under the assumptions

1) $a_{i j}, a_{i}, a \in L_{\infty}(\Omega), \alpha \in L_{\infty}\left(\Gamma_{3}\right)$
2) $f \in L_{2}(\Omega), g_{i} \in L_{2}\left(\Gamma_{i}\right), i=2,3$
3) $g_{1} \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$, i.e., $\exists \tilde{g}_{1} \in H^{1}(\Omega):\left.\tilde{g}_{1}\right|_{\Gamma_{1}}=g_{1}$.
4) $\Omega \subset \mathbf{R}^{m}$ (bounded) : $\Gamma=\partial \Omega \in C^{0,1}$ (Lipschitz domain)
5) uniform ellipticity:

$$
\left.\begin{array}{l}
\sum_{i, j=1}^{m} a_{i j}(x) \xi_{i} \xi_{j} \geq \bar{\mu}_{1}|\xi|^{2} \quad \forall \xi \in \mathbf{R}^{m} \\
a_{i j}(x)=a_{j i}(x) \quad \forall i, j=\overline{1, m}
\end{array}\right\} \forall \text { a.e. } x \in \Omega
$$

01 Formulate the classical assumptions which we have to impose on the data $\left\{a_{i j}, a_{i}, a, \alpha, f, g_{i}, \Omega\right.$ resp. $\left.\partial \Omega\right\}$ for (1.1)!

02 Provide sufficient conditions in order to ensure that a generalized solution $u \in V_{g} \cap X \cap W_{2}^{2}(\Omega)$ of $\left({ }^{* *}\right)$ is also a solution of $\left({ }^{*}\right)$ in the classical sense!

$$
\left\{\begin{array}{l}
\text { Search } u \in X=C^{2}(\Omega) \cap C(\bar{\Omega}): \tag{*}\\
-\Delta u(x)=f(x), x \in \Omega \subset \mathbf{R}^{m} \text { (bounded), } \\
u(x)=g(x), x \in \Gamma=\partial \Omega
\end{array}\right.
$$

$? \downarrow \Uparrow ?$
(**) \quad Search $u \in V_{g}=\left\{v \in V=H^{1}(\Omega): v=g\right.$ on $\left.\Gamma\right\}$:

$$
\{\underbrace{\int_{\Omega} \nabla^{T} u \nabla v d x}_{=a(u, v)}=\underbrace{\int_{\Omega} f v d x}_{=<F, v>} \quad \forall v \in V_{0}=\stackrel{o}{H}^{1}(\Omega)=\stackrel{o}{W_{2}^{1}}(\Omega)
$$

03 Provide sufficient conditions in order to ensure that a generalized solution $u \in$ $V_{g} \cap X \cap W_{2}^{2}(\Omega)$ of (1.2) is also a solution of (1.1) in the classical sense !

04 Show that in the following cases a) and b) the assumption of the Lax-MilgramTheorem are satisfied, and derive μ_{1} and μ_{2} !
a) In addition to (1.3) the following assumptions hold: $a_{i}=0, a(x) \geq 0$ for almost all $x \in \Omega, \alpha(x) \geq 0$ for almost all $x \in \Gamma_{3}$, meas $_{m-1}\left(\Gamma_{1}\right)>0$.
b) In addition to (1.3) the following assumptions hold:
$a_{i}=0, a=0, \alpha(x) \geq \underline{\alpha}=$ const $>0 \quad$ for almost all $x \in \Gamma_{3}, \operatorname{meas}_{m-1}\left(\Gamma_{3}\right)>0$, $\Gamma_{1}=\emptyset$.

05 In addition to the assumption (1.3) let us assume that $a(x) \geq \underline{a}=$ const $>$ 0 for almost all $x \in \Omega, \Gamma_{1}=\Gamma_{3}=\emptyset$, and $a_{i} \not \equiv 0$. Provide sufficient conditions for the coefficients a_{i} such that the assumptions of the Lax-Milgram-Theorem are satisfied.

Hint:
For estimating the convection term $\sum_{i=1}^{m} \int_{\Omega} a_{i} \frac{\partial u}{\partial x_{i}} v d x$, make use of the ε-inequality

$$
|a b| \leq \frac{1}{2 \varepsilon} a^{2}+\frac{\varepsilon}{2} b^{2}, \quad \forall a, b \in \mathbf{R}^{1} \quad \forall \varepsilon>0!
$$

06^{*} Derive the variational formulation for the pure Neumann-problem for the Poisson equation

$$
\begin{equation*}
-\Delta u(x)=f(x), \forall x \in \Omega \text { and } \frac{\partial u}{\partial n}(x)=0, \forall x \in \Gamma=\partial \Omega \tag{1.4}
\end{equation*}
$$

and discuss the question of the existence and the uniqueness of the generalized solution of the pure Neumann-problem (1.4) !

Hint:
Obviously, $u(x)+c$ with arbitrary constant $c \in \mathbf{R}^{1}$ solves (1.4) provided that u is the solution of the BVP (1.4). There are the following ways to analyze the existence properties:

1) Set up the variational formulation in $V=H^{1}(\Omega)$ and apply Fredholm's Theory!
2) Set up the variational formulation in the factor-space $V=\left.H^{1}(\Omega)\right|_{\text {ker }}$ with ker $=\left\{c: c \in \mathbf{R}^{1}\right\}=\mathbf{R}^{1}$ and apply the Lax-Milgram-Theorem!
07^{*} Derive the variational formulation of the Dirichlet problem for the Helmholtz equation

$$
\begin{equation*}
-\Delta u(x)-\omega^{2} u(x)=f(x), \forall x \in \Omega \text { and } u(x)=0, \forall x \in \Gamma=\partial \Omega, \tag{1.5}
\end{equation*}
$$

Then discuss the problem of the existence and the uniqueness of the generalized solution of the BVP (1.5), where ω^{2} is a given positive constant.

