TUTORIAL

"Fast Solvers"

Tutorial 2

<u>06</u> Let

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

such that

$$\det(A) \neq 0, \quad \det(A_{11}) \neq 0$$

and let

$$A^{-1} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}.$$

<u>Prove</u>

$$S_A^{-1} = B_{22}$$
,

where

$$S_A = A_{22} - A_{21} A_{11}^{-1} A_{12}$$

$$\begin{split} &\Omega = \left\{ (x_1, x_2) \mid \ 0 < x_1 < 1, \ \ 0 < x_2 < 1 \right\}, \\ &\Gamma_1 = \left\{ (x_1, 0) \mid \ 0 < x_1 < 1 \right\}, \\ &\Gamma_0 = \partial \Omega \setminus \Gamma_1. \end{split}$$

Consider

$$\begin{cases} -\Delta u = f(x), & \text{in } \Omega, \\ u(x) = 0, & x \in \Gamma_0, \\ \frac{\partial u(x)}{\partial n} = 0, & x \in \Gamma_1. \end{cases}$$

Let Ω^h be a uniform triangulation with a mesh step h=1/n and $H_h(\Omega^h,\Gamma_0)$ be a piecewise linear finite-element space such that

$$u^h(x) = 0, x \in \Gamma_0.$$

Define the stiffness matrix A:

$$\int\limits_{\Omega} (\nabla \, u^h, \nabla \, v^h) = (Au, v) \ \ \, \forall u^h, v^h \in H_h(\Omega^h, \Gamma_0) \, .$$

Consider the decomposition of nodes of Ω^h into blocks with the numeration of blocks as on the picture:

1	
2	
•	
•	
n – 1	
n	

Let A_1 is the matrix of the order n-1 having the following form

and let

$$\begin{split} &A_1 = Q_1 \Lambda_1 Q_1^h\,,\\ &Q_1 = \left[q_1, \ldots, q_{n-1}\right], \quad \Lambda_1 = diag\left\{\lambda_1, \ldots, \lambda_{n-1}\right\}, \end{split}$$

where $\left\{q_i\right\},\;\left\{\lambda_i\right\}$ are eigenvectors and eigenvalues of $\;A_1.$

a) Find the representation of A in the form

$$A = QTQ^*$$

where Q is the block-diagonal matrix:

$$\mathbf{Q} = \begin{bmatrix} \mathbf{Q}_1 & & & \\ & \cdot & & \\ & & \cdot & \\ & & \cdot & \\ & & \cdot & \\ & & \mathbf{Q}_1 \end{bmatrix} \begin{array}{c} \uparrow & \\ & | & \\ & | & \\ & | & \\ \downarrow & \\ & \downarrow &$$

b) For each $u^h \in H_h(\Omega^h, \Gamma_0)$ consider the corresponding vector $u \in R^{(n-1)n}$. Decompose a vector u into blocks

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
,

where the vector \mathbf{u}_1 corresponds to nodes from the interior of Ω and the vector \mathbf{u}_2 corresponds to nodes from Γ_1 . According to this decomposition, A has the block form

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}.$$

Put

$$S_A = A_{22} - A_{21} A_{11}^{-1} A_{12}.$$

 $\underline{\text{Find}}$ eigenvectors of S_A .

c) * $\underline{\text{Find}}$ a recurrent formula to define eigenvalues of $\,S_A^{}$.

4