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1 Introduction

These notes aim at the construction of preconditioners B for solving systems of grid
equations approximating elliptic boundary value problems in domains with complex
geometry. A preconditioner B can be used, for example, in iterative processes of the
following form:

B(uft! —ul) = —r*(Au* — f), (D

where A is the stiffness matrix of the original system of grid equations. The con-
vergence rate of the iterative process (1.1) depends on the constants ¢; and ¢, in the
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spectral equivalence inequalities
c1(Bu,u) < (Au,u) < co(Bu,u), 1.2)

which should be valid for any vector u. Here, we assume that A and B are symmetric
positive definite matrices. In [8], a technique has been suggested for constructing the
preconditioner B in the case of uniform grids of a rectangle. In addition, the constants
c1 and co from (1.2) are independent of the mesh size, and, in order to perform the
multiplication of B~! with some vector, it is necessary to solve the system of grid
equations corresponding to the five-point approximation of the Laplace operator on a
uniform grid of a rectangle. The construction of a preconditioner B with similar char-
acteristics in the case of boundary value problems in domains with complex geometry
is of great interest.

The most efficient preconditioners for solving boundary value problems in domains
with complex geometry can be constructed, as a rule, by ‘simplifying’ the geometry
of the original domain. Here, we can point out two approaches. The first approach
is to partition the original domain into simpler subdomains (domain decomposition
methods), and the second approach is to embed the original domain in a domain of
some canonical form, for example, a rectangle in the two-dimensional case and a par-
allelepiped in the three-dimensional case, by introducing additional equations (the fic-
titious domain method and its matrix counterparts) [9, 13, 16, 15, 17, 32, 36, 38].

Of the first group of methods, the so-called Additive Schwarz Method (ASM) is very
effective. The classical overlapping domain decomposition method was first proposed
by H. A. Schwarz in [40]. As a solution method for finite element equations, the ASM
was suggested in [21]. Domain decomposition methods are the subject of the textbooks
[34, 35, 41, 44]. In these notes, results from [21, 22, 23, 25, 26, 27, 29] are used.

In the second group of methods, major gains have been obtained for problems with
natural boundary conditions [1]. Using the matrix counterpart of the fictitious do-
main method, we have managed to construct a preconditioner B such that the con-
stants ¢; and ¢, from (1.2) are independent of A, and the main operation in performing
multiplication of B! with a vector consists in solving the five-point finite difference
counterpart of the Laplace operator in the rectangle. Later, in [18, 19], the so-called
non-symmetric augmentation of the original system of grid equations was proposed
to solve the Dirichlet problem, as well as an iterative process for solving this aug-
mented system of equations whose convergence rate is independent of h. Moreover,
the main operation in one iteration step of the iterative process is the solution of the
five-point finite difference counterpart of the Laplace operator in the rectangle. Some
preconditioner using this idea (not optimal), has been constructed before. Finally, in
[2, 14, 20, 24], the case of mixed boundary value problems was considered for second-
order elliptic equations. The authors suggested an iterative process whose convergence
rate is logarithmically dependent on h. It was the Dirichlet boundary condition that
made it impossible to avoid the dependence on .. The most flexible approach to the
construction of fictitious domain type preconditioning operators in domains with com-
plex geometries is provided by the Fictitious Space Lemma, which was presented in
[28, 30]. This lemma gives the possibility to use “convenient” fictitious (auxiliary)
spaces equipped with “convenient” norms. In particular, instead of a direct solver for
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the five-point approximation of the Laplace operator, BPX-like multilevel precondi-
tioners can be used.

2 Domain Decomposition

Let 2 be an L-shaped domain with the boundary I' = 02, and let 2 be decomposed
into two rectangles {2; and 2, with the common boundary 7. We now consider the
Dirichlet problem for the Poisson equation

—Au=f in2 and u=0 onT

as model problem. Let H}(Q) = {u € H'(Q)|u = 0 on T'} the subspace of all
functions from the Sobolev space H'({2) vanishing on the boundary I'. Then the weak
formulation reads as follows: Find u € Hg (£2) such that

/(Vu,Vv)dQ = / fodQ Vv € Hy(Q).
Q Q

We assume that Q" is an uniform triangulation of 2 and define the discrete space
Hu(Q) = {u" € H}(Q)|u" = piecewise-linear}. The finite element function u" €
H, () can be identified with the vector @ = [uy,...,uy] ', where u; = u"(z;) are
the values at the nodes z;. The finite element approximation to the weak formulation
results in the finite element equations of the form

Au=f, 2.1)

where the stiffness matrix A and the load vector f are defined by the identities

(Aa,@):/(Vuh,Vvh)dQ and (f,9)= [ fo"dQ,
Q Q

respectively.
The vector @ can be decomposed into three groups, that is, @ = [ao,al,ﬂg]T =

T . .
[tg,uf,ug | , where @, @1, and U are corresponding to -, 1, and Q, respectively.
Apparently, we get

Ao Ao A2l |uo fo )
Au = A1Q Ay 0 up| = fl = f
Ayg 0 Ax| |2 fo

We observe that A; corresponds to the Dirichlet problem in 2;, that is, A; «— —Aq,,
for i = 1, 2. From the second and the third equation, we obtain

a = A7'fi — A7 Asotio, (2.2)
Uy = Ay'fo— Ay Asotio. (2.3)
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Substituting (2.2) and (2.3) into the first equation, we get

(Ag — Ag1 AT Avg — Aga Ay  Aso)iig = fo — Aot AT i — AgeAS !t fa. 2.4)
Introducing the Schur complement matrix

S =Ag— An A7 Ao — Ao Ay M Agg
and the vectors
p=19 and P = fo— AnA;'fi — AnaA; ' fo,
we can rewrite system (2.4) in the abbreviated form
S = 1p. (2.5)

If we can find a good preconditioner X for S, then the solution ¢ can efficiently be
approximated by an iterative method, e.g. by the Richardson iteration

B¢ = ¢F) = —mi(S¢* — ),

where 7, denotes some suitably chosen relaxation parameter. The correspondence be-
tween an approximate solution of the Schur complement problem (2.5) with the origi-
nal problem (2.1) is given by the following lemma.

Lemma 2.1 If ||¢" — é||s = ¢ then ||u" — ulla = € where the components of the
vector @" are given by uf = ", i} = A7 (f1 — A10¢™) and @ = A5 (fo — Aged™).

Proof. Using (2.2) and (2.3), we obtain the equations

=N =112 _ =1 =\ 5N m
[a" —ula = (A@W" —a),u" —a)
Ay Ao1 Aps ﬂg — Up ’lig — Ug
= A10 A1 O ’L_L? - 1_1,1 5 1_1,711 - 1_1,1
_AQ() 0 Ag uy — Uz uy — Ug
Aoﬂg + AOll_LTf + Aogﬂg — fg ’l_l,g — U
= Auy + At — fi s |ul — 1
Agotig + Agtiy — fo uy — U
Suag — ¢ ag — Uo Suag — "=
= 0 s lult — = 0 R 0 =€,
| 0 ay — us 0 | 0
which proves the lemma. a

There are some interesting facts about S. The first is that though, S is an interface
problem, it is closely related to the entire problem. The second is that the quadratic

Note 1:

We wrote Schur
complement
everywhere
(instead of
Schur-
complement
and Schur-
Complement)
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form (S¢, ¢) is equivalent to some trace norm. In order to obtain this, we consider
(Au,u) = / |Vul|? dQ
Q

_ /|vuh\2d91+/ V% d9s
Q1 Qo

U U U2 U2
, AV Al . , , I
where A() = AO 0“1 is just the discrete Laplacian —Aq,, which satisfies the
o A

Dirichlet condition on 9€; \ v and the Neumann condition on v, ¢ = 1,2. Let S; =
A — A;0A7" Ajo. Then we have S = Sy + S, and Ay = A{" + AP, Moreover,

inf <A<1)
Ul

The quadratic form (Ajuq, u1) —2(—A100, u1) attains its minimum at A;u, = — A0,
that is, u; = —Al_lAlo(b. Thus,

inf <A<1>

Uy

ﬂ¢ﬂ>::¥w@¢@ﬂmwmﬂﬂ&WwD

= (4676,6) + nf((Ayur, ) — 2= Arod, w)).

¢

U U

¢]> = (A(()l)Q o) + (A10¢, AT A109) — 2(A10¢, AT A1)

= (A(()l)Q @) — (Ao1 AT A1, 9)
= (Sl(bv ¢)

Hence we obtain the following relation:

So,p) = inf ul|? + inf ul|? .
( ¢ (b) up €Hp (Q1),up|y=dn ‘ |H1(Ql) up €HRp(Q2),unlv=0¢n | |H1(92)

In fact, the infimum occurs at u" which solves the discrete Laplacian problem:
—Apu" =0, inQ,
u" =0, on o\ 7,
u =¢", onn.

Let I'" = 0Q", {#} = {x;} be the set of nodes contained in I'*, I; = [z;, zi11],
and h; = |z11 — #z|. Since Q" is shape regular, there exist ¢; # c;(h) such that
c1 < hi/hiy1 < co. Now, we define the discrete norms corresponding to the continuous
trace norms by

hy2 o Ry, \2
6" 17, ,qony = > ¢"(z)h

2, €Th
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and
h h 2
h2 _ (¢"(zi) — ¢" ()
6" HY2(Th) " Z Z |2 — 2,2 hih;.
2 €Th z; €T i#j
Lemma 2.2 The above discrete norms are equivalent to || - ||, ony and | - | gi/2(rny,

respectively, where the equivalence constants are independent of h.

Proof. For the sake of simplicity we assume that I'” is the unit interval [0, 1] with the
nodes {z;}. For the Lo(T"") case, it is easy to prove the equivalence by observing

6™ Ly = Z l6™12, 1)

Let us consider the H'/2(I'},) case. Then, we have

// e |g:7y|2 dwdy_ZZ// (e IZ}; v)’ dxdy.

The above equation can be treated in the following three different cases:
« Case 1) Leti = j. On the interval I; = [z;,z;41], #" is a linear function, in fact,

() = it B0

Therefore,

[ / CACELAC P

¢L+1 ¢1 ¢1+1 ¢1
s priss (4 — g — Bty
/ / s drdy = (¢iv1 — ¢i)°.
|z =yl

e Case?2) Leti+ 1< j. Then we have, Vx € I;,Vy € I,
i1 — 5] < |z —yl < zjen — x4,

and, therefore,

h h 1 Tjt1 [Titl
[ g = g [ e -

Let z = x; + h;a’ and y = x; + h;y’. Then the above equation is equal to

Ixzﬂ—xphh// (8" (a") — @"(y'))2da’dy’
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We now define bilinear forms A and B by,
( [¢1a¢1+17¢]a¢]+1 ¢L7¢L+17¢]7¢j+1] )

// (') — (")) ?da’dy,

(Bloi, i1, 055 b1] T 60, D1, 65 b )
= (¢ = 0;) + (di — dir1)? + (b1 — 95)° + (95 — bj11)".
By an easy calculation, we get
(Alpi, dir1, &5y ia) | (Do Pivrs b5, dj4a] )
= 202+ Gubina + 0+ 28+ Bidya + Ga) — 261+ 6i1) (5 + 651,

We observe that KerA = KerB = {¢ | ¢; = ¢;41 = ¢; = ¢;41}. Therefore, there exist
constants ¢y, ¢y # ¢(h) such that

&1 (A¢7 (b) S (B¢7 d)) S CQ(A(Z)? ¢)

o Case3) Leti+1=7. Leto = 2,11 — hya’ and y = 2,01 + h;1%'. Then we have

(¢"(z) — ¢" () —"W))? .,
/1/17 o yP dxdy—hhHl/ / |hx +h1+1y E dx'dy’.

Assume that h; 1 > h;. Then ;L“ =a>1,sothatz’ +9 <2’ +ay <alz' +v).
Therefore, the above equation is equal to

h / /)2
74+1 / / (b ( )) dl‘ldyl
Iaf + ay'|?

~ H‘l d)h / ( /))2 /0
~ / / o + ; |2 dx'dy
&~ (¢i — $it1)? + (i1 — Pig2)?

This completes the proof of our lemma. a

Then we obtain the following theorem.

Theorem 2.3 Suppose that there exist constants ¢, and cy such that, for any u? €
Hy(Q;) with ult = ¢" on ~, the inequality

||¢h||H;L/2(3Qi) < ClHU?HHl(QJ
holds, and, for any ¢ € H}/?(0%Y;), there exist ul* € Hy,(2;) with u® = ¢" such that

luf ) < c2ll ™l gz on,-
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Then
(Sig, ¢) ~ H¢hHiIi/2(aQi)'

Here ¢ is the vector representation of ¢".

We have just treated the Laplacian equation. For the general elliptic case, .S is more
complicated so that it is difficult to find a preconditioner for S. But the following
lemma shows that it is enough to find a preconditioner for the Laplacian equation.

A Age Bi1 Bia
A21 A22 B21 BZZ

B = BT >0, A1y > 0, and Byy > 0. Let Sy = Aoy — A21A1_11A12 and Sp =
Bay — leBﬂle If

Lemma 2.4 Let A = and B = . Assume that A= AT >0,

e1(Au,u) < (Bu,u) < ca(Au,u)  Va

then
c1(Sau,u) < (Spu,u) < co(Sau,u) Yu.

Proof. We start with the lower estimate. Indeed,

(Spus,us) = inf <B w“l [MD
ul (75 U9
= (B U1 , lm]> (for some v1)
u2 us
(15) u9
> ¢pinf (A = , [m]) = c1(Sausg, ug).
U1 U2 U2
The upper estimate can be proved with the same arguments. a
Let
9 du
Lu = 71»;1 8701(&”(@8795]) + ag(z)u = f(z), z € Q.

Assume that

(Lu,u) =~ HUH%{l(Q)'

Let S, and Sy be Schur complement matrices for L and -A, respectively. Lemma 2.4
implies that it is enough to construct a preconditioner for .S in place of Sy.
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3 Finite Element Trace Theorem

To construct effective preconditioners on interfaces we need the following result about
the analytical characterization of finite element traces.

Theorem 3.1 Let Q) be a bounded domain with the piecewise smooth boundary T, and
let Q" (Q" is a polygonal approximation of Q2 whose vertex may not lie on T') be a
shape-regular triangulation of Q) such that

i) we have
diam 7;

<c ?é C(h)7

ri
where r; denotes the radius of the largest ball inscribed in T;,

ii) there exists a mapping T : T; — T; such that T'(z;) = Z; (z; and Z; are the vertices
of ; and T;, respectively) and

o T(7;) = 7; is also shape regular,
e 2z, €M = %, € T (The map T moves z; € " to 3; € T.),

° 301,02 7é C(h), 01|ZZ‘ — Zj| S |2i —2j| S 02‘27; — Zjl'

Then

(1) There exists a constant cs # c3(h) such that
H(ph”H}l/z(Fh) < C3HuhHH1(Qh) Vuh S Hh(Qh) with uh\rh, = <ph.
(2) There exists a constant cq # c4(h) such that, for any given o € Hy,(T'"), there
y 8 2

exists a finite element function u € Hj(Q") satisfying the trace condition u* =
©" on T}, and the inequality

a1 my < eall™ Lz qon)-

Remark 3.2 Such mappings T really exist if ['* ~ T in O(h?) accuracy.

In the paper [12] by Korneev (1970), the special finite element function a €
Hjy (") on the curvilinear triangulation Q" was suggested such that a"(Z;) = u”(2;)
where @" € H,(Q") and u" € H;,(2"). Moreover, the following lemma holds.

Lemma 3.3 There exist constants c5 and cg # c(h) such that
esll@| 2y < |z < coll@ 2z,
o5\ pr) < Uiy < col@ [ r),s

esll6" 2z < Ne"llzzcy < coll@"ll 2,y
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and

IN

of [ EE-POR,,

|z —y?

// (" (x) — " (y))? dudy
LJI; lz —yl?

(" (x) = &"(y))*
Co /I} /fj o y? dxdy,

@ J

IN

where T = J, I; and T = |J, L.

The proof of Lemma 3.3 is based on the result from [12]. Now, we are able to prove
Theorem 3.1.

Proof (Existence of c3). There obviously exists a constant c; such that, for any given
u" € Hp(Q"), there is a a" € H'(Q") satisfying the inequality [|a@"| 1 qny <

crlluM|| i any. Setting @" = @"|p € Hp(T), we define " € Hj(T',) as a linear
combinations of vertex values of $". Now, we get the inequality

18" | 12 (ry < esll@®] o)
from the usual trace theorem. By Lemma 3.3, it follows that
h ~h
19" g2 ony < Coll@™ L2y
We remark that this is immediate in the case Q" = Q. a

Proof (Existence of cy). For a given " € H,(T"), let " € H,(T) be such that

@"(2) = ¢"(2;). Then we have by Lemma 3.3

H<»5h||H1/2(r) < C||<,0h||H;/2(Fh).

IN

By the inverse trace theorem, there exists u € H* () such that u|r = ¢" and |[u| g1 (o)
@™ | 172 (ry- But u ¢ Hy(€2). How can we construct @ € Hp(€2) ? It is enough to
have values at Z;. Let

oM (%), ifz; e,
ah(gi) — 1

r;

/ u(x)dx, otherwise,
B(EI ,Ti)

where r; is the radius of the largest ball B(Z;,r;) inscribed in the union of all ele-
ments sharing the vertex Z; which is denoted by K;. Then we take v € H, h(Qh) with
u"(z;) = 4" (%). By Lemma 3.3 it follows that ||u"|| 1 qn) < cl|a" | g1 (q)-

It remains to show that ||@" || g1 () < ¢[|@" | g1/2(r). We note that o — @M — u —

h — u". By Friedrich’s inequality, we obtain

U

" 20y < c(|@" ) + 16" I L2r))s
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and since [|" | .2 (ry < C|ll| g1/2(ry it is enough to estimate |@"| ;1 (o). We note that

@ i) S ¢ Y (@"(E) - @"(2))%

lieﬂh’

where Z;, and Z;, are the vertices of the edge ;. Now we consider the following three
cases separately:
« Case 1) z;,, Z;, € I'. In this case, we immediately get

Z(ah(éh) - ﬂ’h(giz))2 Z(@h(zl) - @h('%iz))Q

"(z))? )
ZZ |Zl,z E hihy < c|@" 32y

IN

« Case2) z;,, Zi, € §2. Here, we use the following result.

Lemma 3.4 Let 0 < hy < ho. Then we have the estimate
1 1 ? h
u(z)dr — —/ ulx)de | < —— 2 1y
<7Th / 0 h2) ( ) ﬂ_h% B(Oﬁhl) ( ) > 7Th ‘ |H1 B(O h2))
that is valid for all w € H*(B(0, ha)).

Proof. Let (r,0) be the radial coordinate system given by the relation

x = (x1,22) = (rcosf,rsinb).



Note 2:
May we delete
r:?
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Then we obtain

2
1 1
— w(x) dx — —/ w(x) dx

ha 2m h1 27
= <7rh2/ / u(r, 0) rdfdr — h2/ / u(r,0) rder)

hg 27
= ( / / u(r,0) — u(r/a, 0))7’d9d7‘) (a=hg/h1 > 1)

7rh2

2
ho 2 r
= % / / /Tl/QMdt r1/240dr
Vs h2 0 0 r 8t

CB. hz  p2m

< / / (8“ t’e) r dtdfdr
7Th,2 t

r<at ha o p2m ou(t, 6)

< 7)) ¢ dtdod

= 7rh2 / / ( ot ) "

ho 27 ho au(t’
7rh2 / / ( 5 ) t dtdOdr
2m h2 2
= / / (8“ ) t dtde

<

p |U|H1(B(O,h2))'

The last inequality follows from the fact that (§%)? < (£%)% + (£%)2. This finishes
the proof of Lemma 3.4. a

Now, we can continue the proof with case 2).

Can we find a constant ¢4 such that for all ¢, € Hh(Fh) there exists a finite
element function u" € Hj,(Q") satisfying the trace condition u"(z) = ¢"(x), = €
I'™ and the inequality |[u”[| 1 qn) < C4|¢)h|H;/2(Fh) Using the construction (;Sh

" € Hy(T) — u € HY(Q) — @ € Hy(Q) with

(%) = % / u(z)dr, (3.1
Ty JB(zi,ri)
we can proceed as follows. There are two cases:
1) %,z €l
2) %,z €Q

Let r denote the radius satisfying the following inclusion:

B(z,V2r) C K;, UK;,, z¢€l,.
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Now we estimate (@"(Z;,) — @"(Z;,))? as follows:

mr2

2
1 ~h
+ (W /B L (m)

2
1 1
+ —2/ u(z)dx — — u(z)dx
mr B(z}z,r) mr B(Eilﬁ’)

For the first two terms we can use Lemma 3.4. Let us now estimate the third term:

2
1 1
—2/ u(z)dr — — u(z)dz
wr B(Zigvr) r B(2i1 ,7")

1 2
T (/B@M)(“(“ y) —ul))- 1dx>

2
@ (5,) — ah(z))? G — w(z)dz
(@ (%) (2i,))° < 3 < (Zi,) /]3(21-2,7*) (z)d >

< o (1 9) = ule)Pda

< 71'1"2/_ /_ s+ h,t) — u(s,t))*dsdt
L (P
EaC Or
- 7Tr2/r/r+h (auit ) et

< 2|U|H (Ki, UK,,)-

« Case 3) %, €T, %, € Q. Next, let Z, = (0,0), Z" = (h1,0), Z;. = (—hs,0),
Zi, = (0,h3), and r: B(Z;,r) C S, where S = {(s,h)| —ha < s < h1,0 < h < 2h3}. Note3:

Then, we have May we write:
and r with
) 2 B(...
(@) - @GP < (G- [ s
mr? B(Ziy.r)

2
1 / h
+ | — u(z)dx — u"(Z; .
(71'7"2 Biziyr) ( ) ( 1))
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The second term can be estimated as follows:

2

1 / ~h(z cB. 1 ~hiz )2
— u(xr) —u"(z,))dz < — u(zr) —u"(z,))"dx
mirt ( B(zn,r)( ) (%) > mr? B(zllﬂ)( (@) (2)

2h3
< W2 / (s,t) — ¢"(0))%dtds
th 2h3
2 ([ - [ [Fn-nora
ho
<

e (/ "o )d’fds
1o ( / " (36) - éh<o>)2 ds+ [ (d() - ") d))

~ ~ 2
< (Julngs) + (@) = 8" () + (8 (2) — 8" (24,)%)
Finally, we have

”uh”Hl(Qh) < C4||¢h||H}11/2(Fh)- 0

In the following we need Sobolev’s norm equivalence theorem, the proof of which
can be found in [43].

Theorem 3.5 Let l: H'(Q) — R be a linear bounded functional. If 1(c) = 0 for some
constant c yields ¢ = 0, then ||ul| g1 (o) = |u|g1 (o) + |1(u)].

For instance, this theorem immediately yields the well-known Poincaré inequality

2
||u||%2(m <C <|u%11(9) + (/Q u(m)dw) ) .

If fQ wdzx = 0, then we have the usual Poincaré—Friedrich’s inequality.

Lemma 3.6 (Poincaré inequality in H'/2(T"))

/F¢2(z)da: <C (/F/Fdedwa (/r qb(x)d:z:) 2) . (32

Proof. Letz,y € I and x # y then

(¢(x) — o(y))?

x) — 2 0
(d(z) — 9(y))” < C 2 — y|?

b

where Cy = diam 2. Thus, we have

[ oo < | [ 1920 g,
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Substituting

| @@~ oty

= | [ otapaedy—2 [ [ o@otwrasay [ [ owideay

_ 2~meas(F)/Fqb2(x)dx—2 (/F qb(x)da:>2

into above equation, we arrive at (3.2). a

Theorem 3.7 (Trace theorem with semi-norm) There are two positive constants Cq
and Cy such that

1) forallu € HY(Q) its trace ¢ on T satisfies the inequality
9l 172y < Cilulia),

and
2) forall $ € HY*(T) there exists a function w € H'(Q) such that u = ¢ on T and

[ul 1) < C2|Pl iz (ry-

Proof. Letu € H'(Q). Then, the function u can be split into two parts as follows:
1
u=ug+u;, ug= constant = 7/ udS2, / u1d) = 0.
meas(Q?) Jq Q

Now we split ¢ = ¢ + ¢1 into the traces ¢y = ug|r and ¢; = uq|r of the functions wug
and u; on I'. Then we have

19120y = 191l 172y < Csllutl| 1) < Calui|mi o) = Calulm(q)-

This completes the proof of the first statement of the theorem.
The second statement can be proved as follows: Let ¢ € H'/?(T") be decomposed
as

¢ = o+ ¢1, @9 = constant = uy, /ngldl" =0.
By the standard trace theorem, there exists u; such that u; (z) = ¢1 () and
luillze) < Csllénll ey
Set v = ug + u;. Then u(x) = ¢(z),z € T and
|ulFr ) = lurl3n o) < C5||¢1||?{1/2(1") < CG|¢|?{1/2(F)

where the last estimate follows from the Poincaré inequality . a



Note 4:

Or: when the
norm in H< is
additive with
respect to the
domain’s
measure. (?)
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Remark 3.8 We have the same theorem for the finite element space because the FEM
space contains the constant function.

Note that the definition of ||¢|| 1,21y is very complicated.
If € H'(—1,1) then we have

HQS”%{l(—l,l) = H@b”%ﬂ(—l,o) + ||¢H%rl(0,1)~

This kind of identity is only true for H* with 0 < o < 1 and o # 1/2, when norm in
H< is additive with to respect of the measure of domain. In general cases we use the

norm 1 1
_ (612) ~ o))"
lolfge = o3+ [ [ S duay

and the following lemma.

Lemma 3.9 There exist positive constants ¢ and co such that

1 2
(6(x) — (=)
ooy < 16ncry + Wl + | d

X

T

IN

ca |6l /2 (1.1

J/l dy __J/1+x a1
o (@+y? Jo 2 a(l+a)

1 Log 1
——S/g—i—g—,xe@m
20 = Jo (x+y)? "z

Then we can estimate the third term 7(¢) in the first inequality as follows:

! —¢(—z
o) - [ G- Digh

xT

Proof. We have

Thus,

<[ x(x e
< // qj( dydx+4// x+y ))Zdyda:
<

(‘¢|H1/2(071) + |¢|H1/2(_1,1))'

Thus, the second inequality is proved. For the first inequality, we only need to consider
the semi norm. First of all we have the representations

|¢|H1/2(01 / / ¢ )2 dydzx
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and

9l 21y = / / dyd”/ / / / / /

= I—|—II—|—III—|—IV.

Since I = |¢\§11/2(0 ;) and IV = |gz5|§11/2(_1 0y» We have to consider only /7 = I11. So,
we estimate only one of them:

/ / )2 dydx

<// Y . [ =)

2 [ (ot 2/01 it (33)
o[ e,

Here we have used the change of variables (y — —vy'), (x — —a’). Now, we use the
estimates of the integral

1 /1 dy 1

< 7 <

20 = )y wty)? "z

to see that the third term is less than |¢>|§{1/2(71A0). Then I + 11 + II1 + IV can be
estimated by

IN

2I(9) + 16121 /2(_1.0)
that proves the fist inequality in Lemma 3.9. a

Now divide the boundary (like a circle) by two points ¢ and b on I, and the left-hand
side is called I'y. Let us consider

Let us assume that ¢ is equal to zero on FO = F\F1 and equivalent to the harmonic
extension into the interior, i.e.,

¢? ¢?
160y % 180Ewaqeny + W0l (= 0+ [ =St [ .
I, |z |

r, |z —al?

With this motivation, we define

1012 = 0+ | 2 [ (3.4)
Hyf*(I1) meeot | par L oo '

Similarly, we introduce

) 1 ¢)2
el 4 [P 35
19llg01/ o 1M1 er1/20,1) /0 z(1— ) e

Note 5:

May we delete
the number
(3.3) and place
the last line
behind the one
before?

Note 6:

Or: Finish the
formula with
fulls stop and
start next line
“That proves”

Note 7:
Really

001/2

H, (0,1)?



Note 8:

Or: a/the
straightened
boundary
Note 9:

Or: grid, gives
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Meanwhile a function in H'/2(0, 1) does not have anything to do with the value outside
(0,1).

Now, let us consider the FEM case. Let €2 be triangularized by Q". Some part of its
boundary is denoted by '} some other by I'?. We now define the discrete counter part

¢h (2:))? ()2
16" g ny =ll¢" ”1”2(Fh T Z 2 hH— > (_(77))%
H, T7) el et

of the norm. The second two terms correspond to an analog in the space H'/2.

0
Let H,(I') = {¢" € H/*(T")] ¢"(a) = ¢"(b) = 0} and ¢" — ¢ € R™. Then we
have the following equivalences:

(S0, 0) = 116" 1 31/2(0ny ~ HfbhH%uz LR 16" 11512

) H ()

Here 1 is straightened boundary. Now, setting ¢"(z;) = ¢(%;) by mapping, extending
it into the unit square and considering it on a uniform grid give

||<5h||001/2 ~ (gqba (b)
H (1)

Finally, we have 5
(59, 0) = (5¢,9).

Hence a preconditioner for S suffices for the original problem. In summary, the Schur
complement S is equivalent to the interface norm which is in turn equivalent to Schur
complement S. On a good domain, the Schur complement .S can be found analytically.

A detailed study on the space H HY 2(1‘1)

Let us start with a review on the Schur complement norm. First we recall that

(Sp, ) = wh\ifiw w17 (@) = 14" 170 (3.6)

where u” satisfying u” | = ¢ is the minimizer. Then, it is clear that
™1 Z1/20) < Callu® 30y = Ca (S, )
For ", there exists a constant C; such that
" 1 () < Calle® 1 /2(ry-
Thus, we have

(Sp, ) = wh‘iniph w1y = lu" 13 @) < 10" 1@y < C4||90hH12ql/2(r)-
-
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We see that the Schur complement norm is equivalent to H'/2(T") norm. Let C*°(0,1)
be the subspace of C>°(0, 1) with compact support. Then it is well known that

(C>=(0,1)),> = L*(0,1) and (C>(0,1)),. = L*(0,1).
However, in the H! case, we have the closure relations
(C=(0, 1))1{1(0,1) = H'(0,1) and (C>(0, 1))H1(0,1) = H;y(0,1).

The definition of H* for o < 1/2 follows from the L? case and for o > 1/2 follows
from the H'! case:

1 1 2
2 _ 2 (p(z) —0(y)
Ieleo = el + [ [ AL deay.

If « <1/2 then
(C>(0,1)) yo = H*(0,1) and (C>(0,1)) = H*(0,1). 3.7

If o < 1/2 then, for u € H*(0,1), its extension by zero outside (0, 1) belongs to
H%(—1,2) like in the case of the L? space. However, for « = 1/2, a function in

H'/2(0, 1) cannot be extended by zero (note that HS/Q = H'/2(0,1)). If « > 1/2 then
(C(0,1)) gra = H*(0,1) and (C>(0,1)) 5o = Hg(0,1).

Let a = 1/2. If we extend C*°(0, 1) by the norm || - | ;y1/2, then we obtain HééQ(O, 1)
00

and we can extend the function in Héf(o, 1) to a function in H'/?(—1,2) by zero.

Hence, we have the proper inclusion
HY2(0,1) 2 H(0,1).
We note that

o=2)? |

1
(olz) -
oo ory ~ 10lBisraos. + Il + | .
0

For ¢ € HééQ(O, 1), we have

1 2
. (e(x)
||90HH3(<2(0,1) - ||90HH1/2(071) +A mdx

Hence, ¢ — 0 as z tends to 0 and 1. Let us define the function ¢ € H'/?(—1,2) by the
formula

0 z € (—1,0),
¢lx) = o) =€(0,1),

0 z € (1,2).
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Then we obtain the relations

1211371 72(—1,2)

”‘p”?{lﬂ(o@) +

/
1 2 2
P P
— ||99||%11/2(071)+‘/0 ( ) + ( ) dx
/

Q

Q

||4P||?ql/2(o,1) +

Q

lel31,2(0,1)

by simple calculations. In the first equivalence, we omitted both ||| ) and

2
H/2(-1,0
21132 /2(1,2) because they are zero by extension.

If @ > 1/2 then we have H® — C9(0,1), i.e. if ¢ € H*(0,1), o > 1/2, then

lim, ., ¢(x) = ¢(x0).

Example 3.10 Let the boundary I of €2 be divided by three points a, b and c into three
pieces I'1, I'g and I';. Now let us consider the minimization problem

inf 2 .
11)€H1(Q),1ul|11}1 =p,w|r,=0 ||w||H1(Q)

The above minimization problem is obviously equivalent to the mixed boundary value
problem

—Aw+w =0,
w‘Fl =¥,
’U)‘FO = O,
ow,
anlm =

The correct norm in H'/?(T;) is now given by the relation

(@)
o —al

Il raeyy = lolnsary + [

1

Itis like in H&é ?(I'y), but it is only an one-side norm because the integral near the point
b is missing. For the FEM case, we use the following discrete norm

h 2

. » (o)
T W E,

||90 ||H,11/2(F1) ||SD HH:L/Z(IH) + 2;1 |Z,‘ — U,‘
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4 Domain Decomposition Method: The Strip Case

In this section, the decomposition of €2 into the subdomains €2; does not have any cross
point. This constellation is called strip case which is characterized by a decomposition
of the form

n—1

OQ\T = | J 75, with v; Ny =0 for i # j,
i=1 =1

=

0= =
i=1

where ~y; is an interface between the subdomains. We again consider the Dirichlet
problem for the Poisson equation as model problem:

—Au = f(x), ze€Q,

u(z) =0, =zel.

Then the finite element discretization yields the following system of linear algebraic
equations
Au=f

which can be rewritten in block form as follows

Ay Apr - - - A, ) fO
A Ay et fi
0 J—
0 .
AnO An Un fn

Eliminating the vector u; from the equation
Aiouo + Ajui = f;

and substituting
u; = —A; Aouo + A7 f;

into the first (block) equation, we arrive at the Schur complement equations
Sp =1, 4.1
where S = AO — ZZL:l A()iA»_lAio, @ = Ug and f() — Z?:l AozA,L_lfl The Schur

1
complement system (4.1) can be solved, for instance, by the Richardson iteration

PFH = oF — RN (SpF — y),
where 3 is a suitable preconditioner satisfying the spectral equivalence inequalities

c1(Zp, ) < (Sp, ) < Co (B, @) 4.2)
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for all vectors ¢, and 7}, are appropriately chosen iteration parameters.
Now we arrange the vector g in the form

¥1

Uug =

Spnfl

where ¢, corresponds to ;. Then we have

SZSl+"'+S7L—17

where
0 0 0
S(i) S(i)
Q= S = |20 T ||
Sor S5 Pm
0 0 0

Now, we look for ¥; and X,,, such that

CRERCE
0 S
ie. (S, 1) = ||50l||?{é(<2(w) and (X,,9m, ©m) ~ H%Dmlliééz

)’ Figure 4.1 gives a
Y
typical situation of a subdomain €2; with interfaces ~; and ~,,.

Iy

Y % | Im

Ty

Figure 4.1 Subdomain §2; with interfaces +; and ~,,.

The corresponding Schur complement is equivalent to the following norm

s(#).(7)) - g B
Pm ©m

wh € Hp (Q:),wh ], =p1,w" |, =@m,w"|rnaq, =0
h|2 h (|2
et 1m + el Zn

due to the previous analysis. Hence, we have the preconditioner for the global Schur
complement as a block diagonal matrix.
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Let us now consider some -, and let us omit the subindex ¢. A norm which is
equivalent to Schur complement norm has the following additive form.

h|2

e ||H342(7)

_ h QOh Z] 2
=Y et Y Y GV, + D —h
= i |z — z] £ 67 )(z; —b)

%) — @h(z )2

SD A BTN i i i) hh+z—h

= siiti 2 |Z - 2] 2167 )(zj —b)

— l5h2
=l HH&P(&)’

where, in the second equation, we have everything replaced by its “tilde” (map it onto
[0, 1]) which is for a curved boundary.

Hence consider the square domain. For example, consider the domain with 4 sub-
domains (£2;, i = 1,2, 3,4) whose interfaces (vy;, ¢ = 1,2,3) do not meet each other.
Then, we have

Sy + S s
S = 552,1) 5(2,2) + S(l,l) S§1’2)
sV s 4s,

where the submatrix S; is the Schur complement (S-C) matrix corresponding to the
subdomain §2;. For instance,
1,1 1,2

S§271) 55272)

and Séi’j ) is the S-C matrix corresponding to €25 and ; and ;. Here, we may write
S=§1+§2+§3+§4

where S; is just the extension of S; by zero elements. Now, in terms of the spectral
equivalence, we have

) 53

Q

3
S~ X, Sy ~
1 1 2 [ 5,

Y
2 ] and S4 ~ Y3.
>3

Note that (3;¢;, ¢;) =~ ||¢]|> ,,., .. Hence, we have
Hyg (i)
1
S~ Yo
>3
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Given a vertical interface-line segment, we introduce an artificial uniform domain and
consider the problem with zero boundary condition on three side except I'; on the left
and consider the Schur complement of this problem, denote it by S.

For a given +; interface, we suppose that we have the mapping from ~; onto one side
of the rectangular domain with uniform mesh of size h = 1/n. Thus, we can now con-
sider our interface problem arising from a rectangular model. The Schur complement
of this model problem satisfies the spectral equivalence relation

o 112

Note 10: In the rectangular domain, we have
Is Aq correct?
Ag + 21 -1
—I Ag+2I -1 B B
A A
Ag = ‘ ' i Ar 7
Ag1 Agp
—I Apg+2I I
-1 %AO + 1
where
N |
-1 2 -1
AO = )
-1 2 -1
-1 2
Note 11: and
We have t and _ t _ _ 1
T Unity? Ap=[0 0 0 0 -1 = (M), Am= A+l
Now we have
S = Ay — A1 (A11) A1
and
So,¢) = inf ul||? = inf Aqu, u).
( ) uh|py =¢" ul|sa\r, =0 ” ”Hl(Q) uh’|1"1:¢7h’7uh’|8sz\r1:0( ° )
By the diagonalization, we decompose Ag as
AO = QAQtv
where Q = |qg1 g2 -+ @n—1|, A is the diagonal matrix with the diagonal entries

A1, A2y ..y Ap—1, and Agg; = A;q;. Note that it is well known that the eigenvalue
Ai = 4sin® X, the jth component of the eigenvector g; is \/g sin(*Zj), and QQ" = I.
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Using this, we get
Q
_ Q
(An)~t =
Q
-1
A+2I I Q
-1 A+2I —I o
X ] X
I A+2I O
and
Ao1 (A1) M Aro
—1
A+21 -1 0
-1 A+21 —1I1 0
e |
I A+2I —Q
= @BxQ',
where
-1
A+21 —I
B -1 A+2I -1 By B
o . . ~ |Ba B’
—I A+21
.
Now let us compute the matrix Bsy,. Let e; = [O SR | 0} , where 1 is in the

i-th position. Consider the following matrix equation.

A+21
—1I

-1
A+21

o

-1 ;vg)

7 A+2r| |29

n—1

€

Then the (n — 1)-th solution vector of the above matrix equation is the i-th column of

.

the matrix Bso, that is,

1)

Wy sy

322 = |* n—1

Note 12:

I think all
matrices above
(position of the
dots) should
look like the
left matrix.
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We denote the vector x,(f) by

g
20— xkl (2
k= .
xff) (n—1)

Let us consider the j-th component. Then we obtain the following matrix equation

A+2 -1 () 0
-1 N+2 -1 29 (5) o
-1 x+2f [20,0) 0ij
Note 13: To discuss some detail we consider the vector equation for a fixed i, i.e.
Or: details
Note 14: @) )
(a) Aren’t the (A + 21)371 —X5 = 0
+ redundant? _ .30 ALoJ (4) _ () —
(b) :z:g) in line 1 +( + )xl 3 0
2? )
(c) dots at the i i i
wrong *1551)73 +(A+ 21)$n12 7‘%(1)71 = 0
=0, v, = o

The first block corresponds to

(A +2)21"(1) ) =0
+(A+2)z17(2) 2$7(2) 0
+A+22Pm-1) —2l?'m-1) = 0
We collect j-th line. If i = j, we have
o
0
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(@)

Combining the vectors z we can obtain the matrix By as

n—1°
SN I B 0 |
0 @@ - 0
By = : : :
0 0 e 2" =)
Then Note 15:
1 1 Shall we delte
& x 1 oq-17 he las f
S = Ag — A21A111A12 = §A +1-QBpQ" = Q(gA + 11— By)Q" tBZQlE?mmWO
and the i-th eigenvalue of S is
& L () -
Ai(S) = 5/\1 +1—a,7 (7).
To compute 935;)—1 (), we have to solve the following system of algebraic equations:
N+2 -1 2 (i) 0
~1 An+2 -1 28 (i) 0
-1 n+2] [29,0) 1
Let o; = %)\i + 1. By using Gauss-elimination technique (multiplying the j-th row by
2¢; and adding the j — 1-th row to j-th row) we obtain the triangular system
di  —do 0 2 (4) 0
do  —dy zg) (7) 0
—d, s o
0 dn—l 275:),1 (Z) dn—2
where do = 1, d1 = 20[1‘, and dj+1 = 2aidj — dj—17 forj = 17 2, e — 2. Let Un(iﬂ)
be the second kind Chebyshev polynomial of degree n, that is,
n+1 2 _ 1\—(n+1)
Up(z) = 2\/7(x+\/ (@ + V22 — 1) ).
Then d; = U;(«;) and Note 16:
(z) (Z) B dn72 B Un—Q(ai) Re-sorte(}i1
TS T Uaned) Correet?

(We note that the first kind Chebyshev polynomials of degree n at c; are determined by
the same recursion scheme for d;, but with the initial condition dy = 1 and d; = «;.)



Note 17:

There are both
notatiops Al/2
and A2.
Unify?
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Hence,
& dn—2
N(S) = o —
( ) « dn_l
Un72(az)
= ai —
Un—l(az)
(@i +ai —1)" ! — (o + /a7 — 1)~
= o; —
" (a1 = (i el 1)
_ 2 (it Vai D"+ (et Vai -1
! (a; + a2 = 1)" — (; +/aZ — 1)
= 0[2 - lf(x)v
where

ozt 1/ B 5 "
f($)—7x_1/x, $—<az+\/o¢i—1 .
Using /a7 — 1 = v/A;/1 + 2, we have the following estimates for \;(S):

\/>\7i § A1(5') S \/yi C()\min; )\max)’

where
n —n
1 + )\max . /6 + /6 ,
4 ﬂn _ ﬂfn

1 1
=1 7)\min An'lin 7A2 in*
+ 5 +14/ + 1 "\min

Since Apin = 4sin’*(£) =~ & and Apax < 4, we have

B" = (1+ v Amin)" = O(1).
Hence, by setting & := A2 = QA2Q", we arrive at the following inequality:

(Z¢,0) < (So,8) < C(26,¢).

C()\miny )\max) =

with

=@

Thus, we have y y
S=QJQ" ~ AY?, withJ = diag(\:(S)),

and )
ST =AEQT,
where @ = (g1, -, qn—1),¢:(j) = \/%Siﬂ i Since Amax < 4, we have C' < Y2 If

we use the Fast Fourier transform (FFT) algorithm, then the cost for computing X~ 1¢
is of order h ™! log(h~'). What is [|¢"[|%,,,,? Since (as a discrete inner product on I')

(0" ") s, = W9, ),
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'y
r T
1 n ko2 5 D
n41 1
'p

Figure 4.2 Domain and Grid Numbering.

where the right hand side is vector inner product and

1 1
||¢h||3{1 = (ﬁAQﬁv(ﬁ)Lz,h = E(AQSv d))a

hy2 1 Y2 1
6=  (e4) 0] = (atoo)

Lap

we have

Thus, we are done with the case of Dirichlet boundary conditions. Next we consider
mixed boundary conditions. Recall that, for Dirichlet boundary conditions, we have

(Se,0) = > (Tip,p), =
l

For mixed boundary conditions, we have
(Sp, p) ~ Z ||‘Ph||§ql/2(w)>
1

where a; is the endpoint of the interface v; lying on the Dirichlet boundary, and

ol = Wl + | L g
Let
2 -1 1 1
12 1 0
A = ) D= )
12 -1 0 1
-1 1 i 1/2_
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and

Ai +2D —D
-D A1 +2D —-D

-D A, +2D -D
-D A1+ D

We note that A; corresponds to the first right vertical block. Now, we obtain

(Aou,u) = > {(iy —ti15)” + (i —wij1)’}
©(4,§)€Q

+ (un,j - Un,j—l)z + 5 Z(Ui,n — ui_lvn)Q

1 i=1

1
24

- 1
‘7:

~ (BQU,’LL),

where

Ay +21 —1I
-1 Ay +21 -1

Bq . .
—I Ay +21 -1
-1 1A +1

The following lemma holds:

Lemma 4.1 If A ~ B then the corresponding Schur complements are also spectrally
equivalent, i.e. Sy ~ Sp.

Furthermore, we have Apin (A1) = O(h?), Amax(41) = O(1), and

1/2

In this case the eigenvectors cannot be easily constructed. Thus, we consider the rep-
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resentation

1
S = (—AH—D)—[O 0 —-D
2
1.4
D
—D[O 0 —I]
D
1.4
_ D<7D A1+I)
D~Y(A, +2I)
—D[O 0 —I] -1

The following matrix corresponds to the finite difference version for the one-side

Neumann problem, see [37, 39]:

D YA +21) —I o
I .
0
D
.y 1o
0
I

Note 18:
First row of
above matrix

M9 1 - correct?
-1
Ay =D714, =
-1 2 -1
. —2 2 -
We obtain
Ay = Q2A2Q5 " = Q2A2Q3 D,
where Note 19:
Is Q2 a matrix,
. 2 . (2i—1)mj .o (26— D) ie.
Q2 = [q1, g2, - -], q:(5) = \/; smT, \; = 4sin® o (a1 - qn]?
fori,j =1,...,n. Here A, is obtained from the Chebysheff polynomial. Therefore, Note 20:
We have
= 1/2 _ —1/2
S = DQ:82Q; D ~ DQA?QID = Spn,  Tply = Q05205 Gy and

For the implementation, it is possible to use

Which notation

In fact, we have a D- shall we use?

FFT for Q.

orthogonal basis such that the following properties hold:
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e Ayg=D"1A1g=)¢ = Aiq= \Dg,
(Dgi, qj) = 6ij,

. (D_1/2A1D_1/2)D1/2q — )\D1/2q,

. (q?gqj) = (GiG;) =6 = QDQ=1 = Q;'=Q'D, with § =
D'/=q.

Neumann Boundary Conditions both on top and bottom of boundary

In this case, we have

-1 1 1/2

Repeating the same analysis, we arrive at the following two possibilities (see Fig-
ure 4.3):

1
San = A5 + 1, () = 4y/?

FN 1_\N
Fl FD Fl 1_\N
FN 1—‘N
N
YNN E&&

Figure 4.3 The two possibilities.



4  Domain Decomposition Method: The Strip Case 121

I'p I'p 'y I'p

0 Q, Qs o

I'p I'p I'p I'n

Figure 4.4 Domain partition with boundary conditions.

This problem generates the following Schur complements and their preconditioners:

0 — SOxx

2) (2) (1)
o s |3 P
S5 S35 Xpp
3 3 1
o — so-[3 HlLPE
So17 S XpN
Q0 — SWanB)
and, therefore,
1 1
Z(D)D (2) (2) Z(D)D (2)
- *bp * =y (3) (3) N *Dp (3)
Xpn +END Xpp

Here Z(g?\, is smaller than Eg)D and Z(D?’zv + Zg\?,’zj ~ E(D?’BD, ie.

Shp <5, + 5PN <cSpp  onne,
B .

We note that (S50,)~1 + (£%),)~! # (Spn + Syp)~ . Furthermore, we have

h T 2
Eowere) = 6" s + | (GG
Tr — as
and ”
EDD
2= DI % S.

3
Shp
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FD FN FN FD
—Au+u —Au+u
I'p 'y 'y I'p

Figure 4.5 Other boundary conditions.

This is only related to the semi-norm. What should we do in this case? We use
—A + [ instead of —A and construct a preconditioner for —Awu + u. Hence, we have

E%\, in the second block of above expression.

Lemma 4.2 Let

A A B B
A - |41 12 7 A-1 - | P 2]
Asr Ag By1 B
Then Bl_ll = All — A12A2_21A21.
Proof. From the obvious relation
Bi1 Bia| |Ain Ar2 _ I, 0
By1 Baa| |A21 Aseo 0 I|’

we immediately obtain the equations
B A+ BiogAg = 1, Bii1Aig + BiaAz =0,
By1A11 + BagAg1 =0, B Aig + Bag Ao = Iy,
which lead to the relations
=  Bio= —BiApAy), BiiAn — BiiApAy Ay =14,
— Bil = All — A12A§21A21.
This completes the proof of the lemma. a

We note that a similar result holds for Bss.
The cross-point case is more complicated. Let us consider some model boundary
value problem in the domain 2 which consists of four subdomains as is shown in



Note 21:
Then we ...?
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Figure 4.6. Let us construct a preconditioner X(*) for S() on each subdomain. Then
we
S = S(l) + 5(2) + 5(3) + 5(4) ~ 2(1) + 2(2) + 2(3) + 2(4) =Y.

However, it is not immediately clear how one can efficiently solve the preconditioning
system. The trace theorem is not enough. We need the so-called “Schwarz machinery”,
in particular, the theory of the Additive Schwarz Methods (ASM) will be very helpful.

2] 1

31 4

Figure 4.6 The cross point case.

S The Schwarz Alternating Method

In 1869, H. A. Schwarz introduced an overlapping domain decomposition method [40].

He used this method, which is now called the Schwarz Alternating Method, for prov-

ing the existence of harmonic functions in complicated domains composed of simpler
domains where the existence is known.

Let us consider again the Dirichlet problem for the Poisson equation

{ Au=f inQ, 5.0

u =0 onT,

in some domain Q = Q; U Q5 which is composed of two overlapping subdomains
Q7 and Q5. Then the Schwarz Alternating Method is nothing but an iterative process,
where we alternately solve Dirichlet problems in the two subdomains, i.e. starting with
some initial guess u” that vanishes on I, we perform following iteration steps:

1. Solution on €2;: Determine sk 1 such that

2
—Augpy1 = f — Auk,
Ugg+1 =0 inT'y,

2k+1

and set = u?* 4 ugpgq.

2. Solution on €5: Determine ugy o such that
—Augpyo = f — Au?FF1,
U2k+2 = 0 in Fl,

2k+2

and set = w?* T fugp o,

Note 22:

Or: we perform
following
iteration steps
for
k=1,2,...
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where k = 1,2, ...
Let us recall the weak formulation of the boundary value problem (5.1): Find

u € Hi(Q) such that
alu,v) =1(v) Yo € H}(Q),

where

a(u,v):/Q(Vu,Vv) dQ) and l(v):/fde.

The weak formulation of the Schwarz alternating method, which was first given by
S.L. Sobolev in [42], reads as follows:

Uk +1 € H&(Ql) :
a(u® + ugpy1,v) =1(v) Yo € H}(Q)

2k+1 2
WL = 26 gy

Uk +2 € H&(Qg) :
a(u T £ ugpye,v) = 1(v) Yo € HE (D)
k2 = g2k Unjoro.
Let us now introduce the abbreviations

H=H\Q), Hy=HNY), H,=H()

and the orthogonal projection (the Ritz projection) P; : H — H; with respect to the
bilinear form a(u, v). Then we can do the following analysis:

a(ugpr1,v) = 1(v) — a(w?* v) = a(u,v) — a(u?,v) = a(u — u?*,v) Yo € H,

ugpr1 = Pr(u — u?F) uZktl — g
u?htl = w2k 4 Py (u — u?h) — ¢ =u?* —u+ P (u—u?)
u2k+2 — u2k+1 + PQ(U _ u2k+1> — (I _ Pl)(u _ u2k‘)

wk:uk_u
Qi:H—H{" Q=I-P
w2k+1 :(I_Pl)ka:Qlwgk

¢2k+2 _ (I _ P2)'¢J2k+l _ Q2w2k+1
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kE>1
a(W?FTL ) = ([P 2 = Q|2
= Q:1Q207%|2 = a(@1Q21*", Q1Q2¢°%)

= a(QleQleqﬁ%ﬂZ)%) = G(Q2Q1Q2¢2k;¢%)

= a((I — (P + P2) + PiPy + P,P; — PPy Py)p?F ¢?F)

= a(@®,4%*) = a((P1 + Po)y*,4%%) + a(Pr Py, 4°)
+a(Py Py 7)) — a( PPy Py p%F)

= a(® ") —a((PL + Po)g?*, %)

Let us assume that there exists a positive constant o < 1 such that
aa(u,u) < a((Py + Pa)u,u) Yu € H.
Then we easily get the estimates
12 e < (1 = a)V2[[9?*]|a
12520 < (1= a) 2w+
which finally yield the convergence rate estimate

1% *2]la < (1 = )19

for the Schwarz alternating method in the energy norm || - |-

The error propagation operator of the Schwarz alternating method is multiplicative.
Therefore, such types of methods are also called multiplicative Schwarz methods. Mul-
tiplicative Schwarz methods are not in parallel. To construct a parallel method we will
consider an additive version of the Schwarz method in the next section.

6 Additive Schwarz Method

The Additive Schwarz Method (ASM) was suggested by A. Matsokin and S. Nepom-
nyaschikh in 1985 [21].
In the case of two subdomains, the ASM is based on the following inequalities
aa(u,u) < a((Py 4+ Pu,u) <2a(u,u) Yu e H,
and can be written in the following form: Given initial guess v’ € H, find iteratively

uf Tt =k — (P + P)(uF —w) k=0,1,2,...

The general theory of ASM is given by the following abstract theorem:
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Theorem 6.1 Let H be a Hilbert space equipped with the inner product (u,v). Let us
consider the decomposition of H into subspaces H;, i.,e. H = Hy + Hy + --- + Hp,.
Moreover, let A : H — H be a symmetric, bounded and positive definite operator
on H and denote by a(u,v) = (Au,v) the corresponding bilinear form. Finally, let
P, : H — H; be the orthogonal projections with respect to a(u,v). Then, the following
two statements are equivalent:

a) There exists an o > 0 such that, for all u € H, there exists a decomposition
U=1uy+ us+ -+ U, withu; = H;
satisfying the inequality
a(a(ur,ur) + alug + uz) + -+ + a(tm, um)) < alu,u).

b) The inequality
aa(u,u) <a((Ph+Po+---+ Pyu,u)

holds for all u € H.
Proof. For the proof of the implication b) = a), we introduce
P=P +Py+---+ Py,

The operator P is symmetric, bounded and positive definite. For any v € H, there
exists av € H such that u = Pv = Z:’;l P;v. We set u; = P;v. Then, we get

a(ug,u;)) = Za(Piv, Pw) = Za(Piv, v) = a(z P, v)
i=1 i=1 i=1 i=1
1 1
= a(u,v) =a(u, P~ u) < —a(u,u).
«

This proves the first assertion.
In order to prove a) = b), we start with the equality

alu,v
|ulle = sup (w,v) 6.1)
vert vla
Indeed,
CaB.
sup a(u, v) < llullalvlla _ .
veH ”UHa veEH HU”a

With v = u, we get sup 2842 > e — 11 This proves (6.1).

lvlla = lulla
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Now, for any u € H, we can conclude

a(u,v) . a(u, ZZ’;l v;)

u = su =
bl = S0 ol =3 el
a(u, Pv;) a(Pyu, v;)
= su = Su
UE}E}Z B UEBZ o1l
cs. sup i [ Piuflallvilla
T el [v]la
LN 121 ARV v
- [v]la
<
using (6.1), the Cauchy—Bunjakowski (C.B.) inequality two times and (a). a

Let 2 be a union of two overlapping subdomains €2; and €2,. We want to show that,
for any u € H}(Q), there exist u; € H{ () such that u; + up = u and

1
lurlFr1 ) + luallF g,y < a||u||%11(9)-

Let
Q\Q
() = u(m), z € M\Q
extension, x € Q1 N Q.

The extension implies the estimate |[u1 g1 (0,) < Cllullmr (o) with uy € Hg().
Then, let uy = u — uy with uy € H}(Q2). This gives the estimates
luallmrq) < llullar@) + lualla @y < (U4 O)llullar @)

where the constant depends on the extension.
In general, we have a(Pu,u) < m - a(u,u) where m is the number of subspaces.
However, if m is large, a refined estimate is required.

Theorem 6.2 The following two assertions are equivalent:

a) a(Pu,u) < Ba(u,u)Vu € H,

m

b) a(u,u) < Zauu
) (’)_5U1+ +um7uueH v

ti=1
Proof. Letu € H and put u; = P;P~'u. Then, we have
U+ -+ Uy :P1P_1u+---+PmP_1u=u.

Letv; € H; : v1+- - -+v,, = u be another decomposition with v; = u; +w;. Obviously,

Note 24:

Or: Let

v; € H; with
.. that satisfies

Vi = U + W;j.
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one obtains Y. ; w; = 0. Moreover,

I

N
Il
—

a(vi,v;) =
1

m
1=

<
S

a(ug, u;) + 2a(u;, w;) + a(w;, w;)

= a(ug, u;) + 2a(P; P~ u, w;) + a(w;, w;)

s
Il
-

|
_MS

s
I
-

Hence,

m

inf E a(vg,v;)
U=v1+-+Vm,v; EH; £ 1
1=

Choosing u = P'/?v, we can prove

a(ui, u;) + 2a(Ptu, Z w;) + Z a(w;, w;).

=1

a(ui,u;) =Y a(PP~ u, PP~ u)

1 i=1

NE

.
Il

a(P " u, PP~ ) = a(P~'u, PP~ u)

NE

1
a(P tu,u).

.
Il

a(Pu,u) < Ba(u,vw) Vu € H <= a(u,u) < fa(P~ u,u) Vu € H.

This proves the theorem.

Lemma 6.3 Let a(u,v) = A(u,v). Moreover, let us define

A1H1—>Hl,

(Asug, vi) = A(ug, ;)

Vui,vi € H;.

Finally, let Q; be the orthogonal projector with respect to (-, -), i.e.

Qi:H — H;

Then, we have P; = A;lQiA.

Proof. Letu € H and set u; = Pyu, w; = A;lQiu. This gives Aw; = @Q; Au. For all

v; € H;, we can conclude that

a(w;,v;) = (Aw;, v;) = (Ajwg, v;) = (QiAu, v;) = (Au, v;) = alu,v;).

Hence, we have w; = u;.

Let us recall that a(u, v) = (u,v) g1 and (u,v) = (u,v)r, for our model problem.

Let us summarize the results obtained so far. The previous lemma has given the
relation between the projection P; corresponding to the given bilinear form a(-, -) and
the Lo projection @);. That is, we began with
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« the decomposition H = Hy + Hy + -+ - + H,,
« the bilinear form a(u,v) = (Au,v), and
« the energetic projections P; : H — H,.

For P =", P,;, we have shown the inequalities

aa(u,u) < a(Pu,u) < Ba(u,u) Vue H.

Then, we have proved that
P =A7'Q;A

where Q; : H — H, are the projections in (-, -). Now, we have
a (Au,u) < (A(Z A7'QiA)u,u) < B(Au,u) Yue H
i=1
and this is equivalent to
o (Au,u) < (AB™'Au,u) < B(Au,u) Vu € H,
where B~ = 3" | Q;A;'Q;. Putting Au = v, one easily concludes that
a(A v, v) < (B v, v) < (A o, v) Yo € H,

or
a(Bu,u) < (Au,u) < f(Bu,u) Yo € H.

Thus, we have constructed a preconditioner B which is equivalent to A. Now, we can
use B as a preconditioner in the Richardson iteration

uf Tt = uk — . BT (AR — f),
or in conjugate gradient method for solving our original problem Au = f.
Example 6.4 (Simple one-dimensional example) We consider the equation —u” = f
0

in Q = (0,1) with the homogeneous Dirichlet boundary condition «(0) = (1) =
Then we have Au = f with

Note that Aisa (n — 1) x (n — 1) matrix and H = R"~!. As in Figure 6.1, we define
H=H;, + H;, Q=Q; UQs and

T
u = [Ul Vg V3 U4 U5:|
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| | | |

U1 V2 U3

Figure 6.1 Numbering of (7, j) element and its subdivision.

where H; = {(v1,v2, v3,0, O)t} and Hy = {(0,0,v3, v4, v5)t}. Here the vectors vy, v
and v; correspond to the interior nodes inside the intervals, whereas the values uo and
uy correspond to the interface nodes between the intervals. Now we can take 5 = 2 by
the property of the projection. For u € H, we want to find some « such that

2

@ Za(ui,ui) <a(u,u), u=uj+us,
i=1

where u; € H;. From Figure 6.1, it can be observed
(Aug,uy) < c(Au,u),

where c is independent of h. Setting us = u — w3, we have such an a which is inde-
pendent of h. In this case, we have

[noo Jo o
Ql_[o 0]’ Qz_lo 12]'

Moreover,
U1 U1 U1 0
Vg Vs Vs 0
Q1 |vz| = |vs|, Q2 |vs| = |v3
Uy 0 V4 V4
Vs 0 Vs Vs
and
2 -1 0 0
-1 2 -1 0o 2 -1
Ay = , Ag =
-1 2 0 -1 2 -1
0 0 -1 2

Note that A; has zero entries that correspond to the multiplication with vy, vs-multipli-
cation, whereas A, has zero entries corresponding to the vy, vo-multiplication. Now,
we obtain the preconditioner in the form

Bl = QAT Q1 + QAT Q2 = AT + A

where A denotes the pseudo-inverse of A;.
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After finishing this simple one-dimensional example, we return to the general ASM
theory. The following theorem covers the case where local preconditioners are used.

Theorem 6.5 Let H = Hy + Hy + --- + Hy,, and a(u,v) = (Au,v). Let P; : H —
H; be the orthogonal projection with respect to a(-,-) and let A be symmetric and
positive definite. Furthermore, let us assume that the following three conditions are
satisfied.:

(1) ala(ur,ur) + -+ alum, um)) < alu,u) for up + - + ty = u.

m

< i ).
(2) a(u,u) < Buﬁ”}&gm:u zZ:;a(uz,ul)

(3) There are local preconditioners B; : H — H,, with B; = B}, such that there
exist positive constants ¢y and co such that the spectral equivalence inequalities

c1 (Biu,u) < (Au,u) < e (Bju,u) Yu € H;
are fulfilled.
Then, we have
acy (A u,u) < (B u,u) < Beg (A" u,u)  Yu € H,
where B~' = B + .-+ B}
Proof. Note that P; = QiAi_lQiA. We have a pseudo-inverse
(QiAQ:)T = QA1 Qi,
since (Q;AQ;)QiA;'Q; = Q:AQ;A;7*Q; = Q;. From (1) and (2) we have
(A7 10,0) < ((@1AQY) T + -+ + (QmAQm) Jv,v) < B(A™ v, v),

and from (3)

a1 ((QiAQ:) T u,u) < (B u,u) < ea(c(QiAQ;) Tu,u)  Vu € H,.
Combining the two above inequalities, we get the result of the theorem. a

Remark 6.6 Due to Theorem 6.1, condition (1) is equivalent to « a(u, u) < a(Pu,u),
with P = P + --- + P, for all u. Using Theorem 6.2, condition (2) is equivalent to
a(Pu,u) < fa(u,u) for all u.

In order to prove the stability of the next decompositions the following lemma is
required.

Lemma 6.7 Let ¢ € H'/?(—1,0) and let us define an extension of ¢ to [0,2] by the
Sformula

_ )@ =z)p(—z), = €]0,1],
@_{ 0, rel,2).

Then there exists a constant C such that ||| g1/2(_1 9y < C|l¢l| g2 (—1,0)-
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Proof. By Lemma 3.9, we have
H‘PH%{lﬂ(fl,z) < Cl(”‘P” HY/2(—1,0) + HSO”Hl/2 0,1) + H‘puip/?u,g) + Il(@) + 12(90))
Note that ||| 1/2(1,2) = 0. It is trivial to prove

llellz2co,1) < llellz2(=1,0)-

Moreover, one obtains

2 B 2)(1—z) — p(—y) (1 —y)|?
|('0‘H1/2(0,1) - / / |:ZZ — yP d:vdy
- / /1 ()= 1) —p(n)( —9) |
- |9C—y|2

. / / o |x_ y>||2 =) 0
—) — 0 £0 |o(z) — 2
2</ / . \:v—y|2y dedy + // |§0(|;—§(2y)| dxdy)

= 2(|(p|?{1/2(71,0)+HQPH%2(71,O))'

IA

On the other hand, we have the inequalities

1 2 1 2
p(—z) —p(—z)(1 —x x
ne) = [ EELZHEZI gy o [ de < el

0 €z 0 €z
1 2
(p(=2)(d — 2))

n) = [ EE e < el

Gathering all inequalities completes the proof. a

Our goal is to construct the Schur complement on the lines (sub-boundaries) of the
interior of the given domain.

We consider a decomposition of A into substructures \;, i.e. A = |, 9 =
U;zl A;. The substructures \;, i = 1,...,m; correspond to cross-points, whereas the
substructures A;, ¢ = mq + 1, ..., m correspond to usual lines.

Let us assume that there exists a constant » which is independent of A such that for
all p € A there exists \;:

B(p,m)NAC A\,

where B(p, r) denotes a ball with a center at p and with a radius 7.
Let H = Hy(A) and H = Hy + Hy + - - - + H,,, with

H; = Hy(M) = {¢" € Hh(A)|p(z) = 0,3z & \i}.
By Lemma 6.7, we have Vgo € H, Hgoi € H;,

et 4ot bl < Ol

A1 Am
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Let us introduce
H1:H1+"'+Hm1; ﬁ2:Hm1+1+"'+Hm-

Then we have H = H, + H,. So far we have constructed the space satisfying the condi-
tions (1) and (2) in the previous Theorem 6.5. Now, we will construct a preconditioner
for the Schur complement by an additive form of pseudo-inverses such as

yl=xf4+... 45t

with
0 0 O
Yi=R; [0 XY2 O|Rl, di=my+1,...,m,
0O 0 O
where R; is the permutation matrix and X is the matrix corresponding to the one-
dimensional Laplacian, i.e. Note 26:
Dots in the
9 1 0 wrong place?
-1 2 -1
X = ) ) _ . 6.2)
-1 2

Hence, we get

0 0 0
Sf=R; |0 X~Y2 0|RL
0 0 0
The preconditioners >;, ¢ = 1,...,mq, are defined later. First we prove the following
lemma. Note 27:
Or: R™ etc. (cf.
p. 106)

Lemma 6.8 Let us assume that the symmetric and positive definite matrices
>:R™"—R™ and S:R"— R"
are given. Lett : R™ — R"™ such that

alp,o)s < (to.to)s < B(p,p)s Vo €R™,

and (t"u, )gn = (u,tp)gn, where (-,-)r: denotes the Euclidean inner product. Set
C = tX~1tT". Then we have

a(CTu,u) < (u,u)s < B(CTu,u) Vu € Im(t).
Proof. By our assumptions, the matrix (¢ '¢)~! exists. We note that

Ct=tt"t)y '2@t )T,
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which is easily verified from the following observation
CrC=t(t") '8 )y " (2 ) =@t Tt) 2",

Now it is sufficient to check that #(t"#)~'t " is a projection. If u € Im(t), then u = t¢
for some ¢. Thus, we have

CYOu=tt"t) "t u=to=mu.
Furthermore, for all vy € (Im(t))*, we have
0 = (vo, tip) = (vo, t(t"t) ™"t ) = (H(tTH) ™'t "vo, tp)  Vep.

Hence, one obtains
CtCuy =0 Voo € (Im(2))*.

Now, for all u € Im(¢), the relations
(CHu,u) = (CHtp,tp) = (4t 1) 'St 1)~ T, tp)
= (tTt(t ") S, tp)
= (¢, )

hold. Hence the proof is completed. a

Remark 6.9 In general, m < n. The operator ¢ can be interpreted as an extension
operator.

In the Additive Schwarz Method, we need to define B;r . Now we will try to set

Bf =(CHT =0y =t~

(3

where t is a proper extension operator. The space H; is defined via Im(¢) := H;. The
stability of the decomposition depends on the choice of the extension operators.

7 Additive Schwarz Method on Interfaces

In this section we use the general framework of ASM in order to develop precondition-
ers on the interfaces.

Let 2y be a fixed cross point. Let A be the union of branches emerging from z;. Let
L;,fori =1,...,m be each branch and let L,,; = L; by definition. The trace norm
on ) is defined via

m
hn2 _ Z hil2
||¢ ||Hé(42()\) Pt ||¢ ||H362(L1ULi+l).

Let z; ; be the point on the branch L; which has the distance jh from z,. We consider
the space decomposition,

Hy(\)=Ho+Hi+---+ Hy,
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where H; = {¢" € Hy(\)|¢"(z) = 0,z ¢ L;} and Hy = {¢" € H"(\)|¢"(z1,,) =
o= @M@y ),7 =1,2,...,k}. Here we assume that each L; has the same number k&
of nodes.

Lemma 7.1 There exists a constant c independent of h such that, for each ¢" € H"()),
there exist it € H; with Zﬁo P = ¢" which satisfies

h2 h2 hoy2 h2
||¢O||H(1)(<2()\)+||¢1||Hégz()‘)++|| m”Héé?(A) §C||¢ ||Héé2()\)'
Proof. Let ¢ € Hy(N). First, we set i (z; ;) = ¢"(zy1 ), forj = 1,...,kand i =

1,...,m,i.e. we take the values of the first branch on the another branches. Due to our
definition, we have ¢! € Hy. Let " = ¢"|,,. Since

10812272 = 718" 202 0y = N0 asary = (Svott, )
there exists a constant ¢; which is independent of A such that
2 2

Let " = ¢h — ¢f. Next, we define the hat functions ¢, i > 1 via ¢/(z; ;) =
€"(xi ;). Then, we have

h2 h2
€810y < 26220

This implies the estimates

||¢?||?{éé2()\) = H(b?HiISéQ(LL) = (EDD¢17¢Z)

Hence we obtain
h2 h2
||¢Z ||Hééz(>\) S ||§ ||Héo/2()\)'

Continuing the above processes, we can prove the lemma. a

The lemma shows that

Sal¢",6") < al(Po -+ )¢, 0) < (m+ Da(s, ")

-
Let ¢ be the extension operator such that, for each ¢ = {wo P e wm} , the

T T
relation t¢" = {wo /I 77} holds, where n = {wl e wm] . Then, we have
the relations Hy = ¢ - F, F = Hy(L;) and

||¢hHH1/2(L1) < ||whHH3(§2(>\) < C”WLHHU?(M)'

This gives
B =S t".
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Now, the whole interface space Hj,(A) is decomposed into subspaces. Let
Hy(A)=H™ + -+ B + HO 4+ HO.

The spaces Hi(N), i = 1,...,mq, are the subspaces corresponding to cross points,
whereas the spaces

HY = {p" € H,(A) | " (2) = t" (2), 2 € Ni, " (2) = 0,2 ¢ \i}

and Hi(o), i = my + 1,...,m, are the subspaces corresponding to intervals between
cross points, i.e.
H} ={¢" € Hy(A) | " (z) = 0,2 ¢ Ai}.

Let
B =B+ + By, Bl + o+ Bl (7.1)
where
0 0 0
By, =10 X712 0
0o 0 0

with the one-dimensional Laplacian operator X, cf. (6.2) and
B, =St

Then, the matrix B (7.1) is a preconditioner for the Schur complement S = Ag —
Z?Zl AOZ»AZIAZ-O. However, the direct computation of A;l is too expensive. In order
to replace Ai_1 by a local preconditioner on €2;, we have to use ASM. This is presented
in the following section.

7.1 Inexact Solvers

In this section, we consider a nonoverlapping partition of €2 into subdomains €2, i.e.

Q=U-, Q;, Q;NQ; =0,if i # j. The space decomposition Hy,(2) = Hy + H; is
considered, where

Hy = Hpo() D - ® Hpo(Q,) and
Hio(Q) = {o" € Hy(Q)]¢"(x) =0,z ¢ O}

correspond to the Dirichlet problems on the subdomains 2;. The space H; is defined
below.

Theorem 7.2 In addition to the above assumptions, let us assume the following:

(A) There exist operators B; which satisfy

cl||uh||%{1(9) < (Biu,u) < cz||uh||§{1(9) Vu' € Hyo(Q), i=1,...,n.



7 Additive Schwarz Method on Interfaces 137

(B) There exist extension operators t; : Hy(I';) — Hp(€;) such that the inequalities

1t:6" |, 20) < esll 8™l mrre gy
holdfori=1,...,n. Let Hi = tHp(\), where t now denotes the global extension
operator composed of the local ones.

(C) There exists an operator 3 with
call o132 00y < (56,0) < 510" 1F11/2a) V8" € Hi(A).

Set

+tn 1T (7.2)

B—l
Then there exist constants o and 3 which only depend on ¢y, co, . . . , c5 such that
a(Bu,u) < (Au,u) < §(Bu,u) Yu € Hp(Q).

Proof. Let u" € Hy, () denote the trace function of u” by ¢" € H"(A), i.e. ¢"(x) =
u"(z),x € A. By the trace theorem, there exists a constant cg independent of h such
that

19" 1172y < collu 17y (7.3)

Let u? = t¢". Using (B) and (7.3), we have

[uf 1 ) < eslld”lmrzay < escellu” (1 q)-

h

Let uf = u" — u}. Using the triangle inequality and ASM proves the assertion. a

7.2 Explicit Extension Operators

The definition of the preconditioner (7.2) requires an extension operator ¢ which sat-
isfies (B). This section is devoted to the construction of the extension operator ¢. The
simplest choice of an extension operator which satisfies (B) is the harmonic extension.
However, in every preconditioning step a problem for the Laplacian has to be solved.
This is too expensive. Therefore, we have to find another one.

Let (s,n) be a near boundary coordinate system, where s denotes the tangential and
n denotes the normal coordinate. Let ¢ be a given function defined on the boundary I"
of a domain 2. For the continuous case, we can define the extended function u = t¢
by

n

s+n
u(s,n) = £(n) ~ / o(t)dt,

where £(n) = 1 — %, and D is the thickness of the near boundary strip. Let ¢ be
some finite element function which is given by its nodal values ¢(1), [ = 0,...,i + j.
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The function u is defined by its values at the nodal points z;;, where the first index
corresponds to the tangential component and the second to the normal component, i.e.
z;jo are the nodes on the boundary. Moreover, we introduce D;; as the cells of an
auxiliary grid. Then, the extension u is defined by the following three steps.

=0
1— l
2. U(zy) = ) — V(zi),
3. uh(zl) { U(ZZJ) if z; € Dij
0 if Zl ¢ Uij Dij

In matrix vector-notation, we have u = t¢ = P3P, P ¢, where the matrix P5 is given
by

P

Note that the lower identity matrix corresponds to D. Then we have
h
[u" |2 @ny < eV Im2 (o

Due to the second step of the extension, the matrix P, is a diagonal matrix, i.e. P, =
diag{. Lj/n .}. The matrix P; corresponds to the first step and has the form

AT
g -
1
P=11 1
1 1
1 1

The identity block corresponds to V(z;0) = ¢(i), s = 0,..., N — 1, whereas the
values of the j-th layer in normal direction are given by Pi¢ = V(z; j11) = V(2 ;) +
pi+j+1),0<i< N-1,0 < j < M. The total computational cost for the
multiplication with Py is O(h™2).
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Let t" = P, P, PJ’ be the adjoint operator. For any given function V, we define
the function W by
Wi(zim) =V(zim), 1=0,....M

andfor:=0,...,Nandj =M, M —1,...,1, let
W(zij-1) = W(zij) + V(zij-1)-
If we set ¢; = Z;VZO Z;:i—j V(z1,5), and W(zi 1) = V(2inm1)
Witij—1) = Wilziy) + V(zij-1)

we atrive at ¢; = Zﬁo W (z;—;). Therefore the total cost for a multiplication with ¢
is again O(h=2).

Remark 7.3 We note that multilevel (hierarchical) explicit extension operators were
suggested in [10]. This multilevel decomposition on a boundary of some subdomain
is based on the results of [45]. But this method is not asymptotically optimal. An
optimal method (with respect to the arithmetical coast and the norms of the extension
operators) of the multilevel explicit extension of functions was suggested in [31] and
[11]. In this case the multilevel decomposition on the boundary of the subdomain is
based on BPX-like decompositions.

8 Domain Decomposition with Many Subdomains

In order to use parallel computers with many processors a decomposition of an original
domain into many subdomains (n > 1) of small measure is required.
Let 2 be a domain of diameter O(1) with boundary I', and set

Qe ={(z,y) 1 v =es, y=ct, (z,y) € 2}
with boundary I'.. Here we present some results on the trace theory in general Sobolev
spaces with small diameters which are characterized by a small parameter ¢. For the

FEM solution of elliptic and parabolic problems this parameter ¢ usually is equivalent
to a mesh size of the coarse grid H or the average diameter H of the subdomains.

Lemma 8.1 There exists ¢; # c1(¢) such that, for all w € H'().), we have
p(z) = u(z), z €T, Il < alulm ),

and vice versa there exists co # c3(¢) such that for every ¢ € H'/?(T.), there exists
u € HY(Q.) satisfying

pla) =u(@), zele,  |uluyq,) < elelmyr,)-

Note 28:
“and” before
displayed
formula?



140 Domain Decomposition Methods, Nepomnyaschikh

Proof. Using the change of variables, i.e. (z — s), (y — t), we have

S AN oy ) — Jo \ Os ot ) — THN

and
> _ ((z) — o(y))*
|90‘H1/2(FE) = /FE /Fs o yP? dzxdy
B(s) — @(t))? .
o[
which prove the lemma. a

Now we define
lelssm = ellelaqesy + 1o lnae,y
Lemma 8.2 There exists ¢; # c1(¢) such that for all u € H(Q.),
o) =ul@). 2 €Ter ol o, < llullinay.

There exists ca # ca() such that for every p € H'Y?(T.), there exists u € H'(9.)
satisfying
o(@) =ule), v €Te,  ulmia < callolyorae,

Proof. Using evident transformations we have

lul o, = /Q W+ /Q V2 = (112, + (32110 ~ 21512, 0y + 32110,

elelz, .y + |<P|§11/2(r5) =21l @) + Wﬁ{l/z(r)-
a

Lemma 8.3 There exists ¢; # c1(e) such that iffF; o(x)dr =0, meas(I') ~ ¢, then

1
g||<ﬂ\|%2(re) + |<P|§11/2(r5) < Cl|¢’@11/2(rg)'

Proof. In order to estimate %”30”%2(1“5)’ we use the following simple manipulations

1 ~ ~

el + leliemy = 18150 + 1812w
< CzHﬁHip(Q) (Theorem 3.5)
< C3|’EL|?{1(Q)
<

€1 |90|§{1/2(r5)'

This completes the proof of the lemma. a
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Lett: HY/?(I'.) — H'(.) be given by
n
=ty = -1 —
u=tp=gv,  Em)=1-1,
where £(n) is defined above, v € H'(€2.) is a preserving of norm, but does not satisfy  Note 29:
to a homogeneous Dirichlet boundary condition. The cut-off function £ gives to u the Correct: isa

homogeneous Dirichlet boundary condition. Then preserving of
norm . .. satisfy
1 toa

ulF .y = 1EPN0IZ 00 + 1€l 0lEn 0., €' = 6

Since the |¢'| can be big, we suggest the following construction of the extension
operator. For o € H'/2(T',), letp = @o+p1, where g = constant and ng 1(x)de =
0. Now we define ug = constant = g and u; = tp; = &v. Then we have the
inequalities

luollLay < coellpollary,
1\2
(2) Wlan +loBney < calorBuus,) =l
Using Lemma 6.7 we can easily prove the following lemma.

Lemma 8.4 For a given function ¢ : [—1,0] — R, let

o) = {(1 - @)e(=a), wclo1],

0, x € [1,2].
Then there exists a constant c such that ||| -1/2(_1 2y < clloll mr/2(—1,0)- Note 30:
Minus in
H-1/2

Lemma 8.5 For ¢ € H'/?(0,3¢), we have (c # c(¢))

correct?
1
g”‘pH%Q(O,SE) + |90|?{1/2(0,35) < C||90||%11/2(0735)'

Let ¢ = @1 + o with
z), xz€(0,¢),
wa(x), x € (2¢,3e),

where p1 and @y are defined on [0, 3¢| according to Lemma 8.4. Then

1 2 2 1 2 2 2
g”@lHLz(o,ss) + lo1lE1/2(0,3¢) T gH@ZHLQ(o,ss) + 102l51/2(0,3¢) < C1llellzrsz o 30-

Proof. Tt is easy to see that

8 (@) — o), [° [P (@) — B(1))?
// oy d“’”dy*/o/o FET
3e 3

é/o goz(:v)dx:/O @(s)? ds.
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Lemma 8.6 Let o € H'/?(0,3¢) be a continuous and piecewise linear function with

¢ (ie) = i, and linear on the intervals [ie, (i + 1)e], i = 0,...,3. Then
3 3 3
11312 0,50y = D_20E + DD (i = 03)”.
=0 i=0 j=0

Proof. The assertion immediately follows from the relations

3 3 3
EHSDE”%Q(O,BE) ~ 282()022’ and |SDE|§{1/2(()_’35) ~ Z Z((pz - 90])2
i=0 i=0 j=0 0

In order to construct asymptotically optimal decompositions in the case of many
subdomains, we have to consider the so-called coarse subspace beside the local sub-
spaces. To do it, we use the following lemma.

Lemma 8.7 There exists ¢ # c(h,e) such that, for every " € Hj(0,3¢), there are
%, o1 b satisfying

O = o + ot + b, ©° piecewise linear,
ot (z) =0, x € (2¢,3e),
©h(x) =0, x € (0,¢),

and
h h h
H‘PEH%I/?(O,&;) + ”901 ”%{1/2(0,35) + ||§02 ”?{1/2(0735) § C”QD “?{1/2(0735)'

Proof. We define the piecewise linear function ¢° by the values

Note 31:
twice linear
correct?
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Then we arrive at the following estimates:

1 Tit1 2 1 Tit1 )
(5/ o(x) dz) < 5—26/ ©*(x) dx,

i i

(%’)2

(]
mt\')
5
o
IN

5H90H2L2(0,35)7

2 Lo, [ A i
(pi — i) = - @(x)dw*g ¢"(z) dzx

J

Titl LTi41 Titl LTi41 2
= / / x) dydx — f/ / x) dxdy

Ti41 I]+1 _ ( )
< / / d;vdy
62 Ix - |
i+l Tj41 _ Ak 2
< / / "W). dy,
Iﬂc -yl
Q/Jh = 90 - 90 ’
€ 3e
/ M (z)de = Y (x) dz = 0.
0 2¢e
This completes the proof of the lemma. a

Let us define the substructure as above. Then the following lemma holds.

Lemma 8.8 Ler Q = |J!'_, Q;, where Q; is polygonal and diam Q; = O(H), and let
A UZ 1 i Then there exists c # c(h, H) such that, for every " € Hy, (M), there are

oH <p1, ceey cpm satisfying
(i) o™ piecewise linear on the coarse grid U;l:l o, and
(ii) oM (x) =0, if z is a cross point of N\, i = 1,...,m.

Then we have

||<pH||H1/2(A) < ClHQOh”Hl/z(A),

m
S el sz a) < Calle 3rnsaay-

i=1

Sl=sh 45+ 42 G o) 29 e
H (M)
(Sup, @) =H>Y 0i +3 ) (pi—95)%
i J

(S0, 0) 2 19" 172 (a)-
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Proof. The proof of this lemma follows from the general theory of ASM and the pre-
vious results. a

9 Additive Schwarz Method (ASM) and Multilevel
Decomposition

The ASM preconditioner also requires preconditioners for the subdomains. This sec-
tion presents a possible preconditioner. Let © be a domain in R?, Q;,i = 1,...,7n be
a disjoint subdomain of Q and A = (J!"_, 8;. In addition, we introduce matrices B;
which define equivalent norms for —Aq, and a matrix ¥ which generates an equivalent
norm on the space H'/2(A),i.e. B; «—— —Aq, and ¥ «— H'/?(A), respectively.

Let t: HY/?(A) — H(Q) be an extension operator. Then the inexact ASM precon-
ditioner (7.2) has the form

where the first block corresponds to A and the block ¢ + 1 to €2;. Let us fix the sub-
domain €2; and omit the index . First we consider the case when 2 is polygonal.
Let Q,Q%F ..., Q" be a sequence of grids on Q and Wy C Wy C --- C Wy = W
be a sequence of nested spaces, respectively. We denote the nodal basis in W}, by
{(;Sgk)}i:l,gw,nk, and @Ek) ={a- ¢§k)|a € R} the vector space spanned by the basis
function qSEk). Then we obviously have the representations

J ng
We=0" + +e® and w=> 3ol ©.1)
k=0 1:=1

Let P,L-(k) W — <I>Ek) be an orthogonal projection with respect to a(-, -).

The so-called BPX preconditioner (multilevel preconditioner), which corresponds
to the space decomposition (9.1), was proposed by J. H. Bramble, J. E. Pasciak and
J. Xu in [5]. The investigation of the optimality of the BPX preconditioner is due to
P. Oswald [33], see also [3, 7, 34, 46]. The BPX preconditioner can also be considered
as ASM for a special decomposition of the original finite element space into subspaces.

Due to the space decomposition (9.1), the following result can be shown.

Theorem 9.1 There exist two constants « and 3, which are independent of h, such
that
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(1) For every u" € W, there exist ugk) c % such that

2

J ni

SN u =t 9.2)
k=0 i=1
with
J ng " 1 .
> M ey < Sl o). 93)
k=0 i=1
(2) Moreover, the inequality
ey <6 it o, o e 04

k
by g:o Z:L=kl ”E ) =uh

holds.

Remark 9.2 Note that relation (9.3) implies the estimate

J ng
o i e < a (zza@uh,uh> < Bt )

k=0 i=1
The proof uses the following fundamental result that was already suggested by
P.L. Butzer and K. Scherer in [6].

Lemma 9.3 Let Q, : W — Wy, be the orthogonal projection in Lo(Q2). Then there
exist two constants C1 and Cs, which are independent of h and J, such that

J
Cullu™lF ey < IR 1Qou™ 17,y + Y 1y 2@k = Qr—1)u" 13,0
k=1

IN

CQHuhH%Il(Q)
and

J
Cilll®lll < inf > hZuglF,0) < Colllul]l
u"=ug ~~+uJ E—0

up €Wy,
For the finite element case, the rigorous proof of the lemma can be found in [34].

Proof (Theorem 9.1). The proof of (9.3) considers the decomposition

J
uh = Qou + ) (Qr — Qr-)u" = vf + o} + - 0T,
k=1

where vl € Wj. Note that @ ju" = u". On the other hand, the fact that v} € W
implies the relation

ng

ng
k k
3 =1
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where vgk) € <I>1(-k). Thus, we have

Using the inverse inequality, Lemma 9.3 and the fact v,’; = (Qr — Qr_1)u", we obtain

J ng J ng
ZZIIv?“)IIip(m Zzhizﬂvgk)\\i(m

k=0 :=0 k=0 ¢=0

J
> Il
k=0

h
< "3 @)

Q

Q

This proves (9.3). In order to prove (9.4), we start with

J ny
. _ k
[0y < Binf Y-S o1, o)
k=0 i=1
Moreover,
7 J ng
. k i k k k
(k)lnf(k> ZZ 2”7)( )HLz(Q = l%zzhkz”ag )¢£ )H%Q(Q)
e F=t= & k=0 i=1
> 7ozzlkl fk)
J
. —211, )2
> cu(%zhk [0k 12, (@)
— mf Z”UkH[Q(Q)
Wi =0
> C~01|IU’||H1(Q)
This completes the proof of Theorem 9.1. i

Let us give an example of the above theorem. Let Agk) : <I>l(-k) — <I>l(-k). Let us define

)

the Ly orthogonal projection Ql(-k) W — <I>§k as follows:

k
QP — (u", o) ))Lz(Q) (k)

% . (k i
~(6",6P) L)

We define Pi(k) W — @Ek) by setting

p) _ (A(k))—lQ(k)
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and a(-, ) by
a(ul,v") = (Au,v).

Then
(AW " o)y — (4¢P, o) = a(¢®), ¢F)) = (PP 60 1, 0,

k k
w_ _a@” ¢)

where a;
k k
(! ), ¢! ))LQ(Q)

. We have the following equalities:

k) Gk

AW G0 _ a(pf”, o) (k)

i k) (k i
(61,61 1a(e)

k) L (k
(¢>§ ), ¢>§ ))Lg(Q) ()
(@ o)

Hence we have the following relations for the preconditioner B

ZZ (AB) =100 ZZ ;—) J’i;?% ).

k=0 1=0 k=0 i=0

(410" =

Remark 9.4 If a(¢", ¢") = O(1), it is possible to replace the above preconditioner by
the original BPX preconditioner

J  ng
_ k
Bppxu" = ZZ (b( ) )d)z(‘ g

k=0 i=0

10 The Fictitious Space Method

The ASM decomposes an original problem into subproblems. But in some cases (sub-
problems with unstructured grids) a construction of effective preconditioners is still a
difficult problem. To solve an original problem we will use the combination of ASM
and Fictitious Space Method (FSM). FSM is the generalization of Fictitious Domain
Method. Some references on the Fictitious Domain Methods are given in the introduc-
tion.

The following abstract theorem is the basis for the FSM.

Theorem 10.1 Let Hy and H be two Hilbert spaces with the scalar products (-, ) g,
and (-,) g, respectively. Let A : Hy — Hy and B : H — H be some self adjoint
positive definite operators, i.e., A* = A > 0and B* = B > 0. Assume that there exists
an operator R : H — Hj such that

(ARv, Rv)p, < Cr(Bv,v)y Vv € H,
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and an operator T : Hy — H such that
RTug = ug Yug € Hy,

and
CT(BTuo,TUO)H < (AUQ, UO)HO VUQ S Ho.

Set C=' = RB™IR*, where R* : H — Hy and (R*uo,v)g = (ug, Rv)u,. Then the
spectral equivalence inequalities
Cr (A ug, uo) , < (C~ g, up) < Cr(A™ ug, uo) Vug € H

are valid.

The proof of this theorem uses the following result.

Lemma 10.2 Let A = A* > 0 in a Hilbert space with scalar product (-,-). Then the
identity

-1 1/2 _ (u,v)
(A u,u)'/? = SU TAv, o)1 72
holds.

Proof (Lemma 10.2). By the Cauchy—Bunjakowski inequality, one obtains

C.B.
(u,0) = (A2, AY20) < || AT 20| AV 20| = (A7, w) V2 (A, 0) 12,

With v = A~ 1, one can conclude that

U V- S C10) I
e s e

which proves the lemma. a

Proof (Theorem 10.1). In order to prove the lower estimate, we use the above assump-
tions about R and 7" and Lemma 10.2. This gives

(RBilR*uo,uo)l/Z)Ho = (BflR*uo,R*uo)H = sup

sup (R UQ,TU0)52 2 \/a sup (R UO,TU;)/);.]
voE€Ho (BT’U(),TU())H vo€Ho (AU(LUO)

VCr sup (U0, Vo) = /Cr(A  ug, up)/?.

voE€Ho (AUOa U0)1/2

Y

For the upper estimate, we have

R A2y AV2R
(RB~'R*ug, uo) /), = Sup% - sup( 20 12 ol
veH (Bv,v)y veH (Bv,v)
CB. A 1/2
S (A l’lLO,’LL())}_I/QS ( RU(),RU)

S B

)1/2.

IN
5
i
b
S
5
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This completes the proof of Theorem 10.1. a

11 Application to the Fictitious Domain Method

In this section we show how the general framework of FSM can be used for the analysis
of the classical Fictitious Domain Methods. However, we have to distinguish between
different cases of the boundary conditions.

11.1 Neumann Boundary Condition

The simplest case is the case of Neumann boundary conditions. Let us consider the
following model problem:

—Au+u=f inQ,

9
fTZZO onT,

where (2 is not regular (not polygonal) and T is its boundary. Let IT be a domain of
much simpler form which includes the domain 2. A possible candidate for IT is a cube.

Let Hy = H'(Q) and H = H{(IT). Let A and B be the differential operators
according to the domain 2 and 11, i.e.,

Ae— —Aqg+1, B «—— —Aq.

Let R : H}(IT) — H'(Q) be arestriction operator. In this case, we define itby R = I.
Then we have
(Ru, RU)H1(Q) < CR<VU, VU)LQ(H)-

Let T : HY(Q)) — H{(IT) be an extension operator. For any u € H'(Q), we have
[l 1) = Cillll g2y = Col| Tul| gy
with
RTug = ug Yug € Hl(Q)
Hence, we obtain the preconditioner for the domain (2 by setting
C~!'=RB™'R".

In matrix notation, we choose

ol = [1 0] (—A7Y)

ﬂ and Ru = ug,

where

R = {I O} and u= luls\)ﬂ]

and [ is an identity block.



Note 32:
Or: extend u
from €2 to IT
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11.2 Dirichlet Boundary Condition (1-D Case)

The situation for Dirichlet boundary conditions is much more difficult. In order to
understand the difficulties, we start with the one-dimensional case and investigate the
boundary value problem

_% = fin (a,b) C (0,1),

Let Hy = Hi(a,b) and H = H}(0,1) with IT = (0,1) and Q = (a,b). Let A = —Aq
and B = —Ay;. In order to extend u from €2 to u on II, we define an extension operator
T : Hi(a,b) — HL(0,1) by

~Ju(z), =€ (a,b),
T“_{o, z T\ (a,b).

Then the relation (T'u, Tuo) g1 () = (o, o) i1 () implies Cr = 1. Next, we consider
the restriction operator R : Hj ,(II) — Hj,(Q). There are many ways to define R.
Here we investigate two different definitions of R which we will compare.

(1) The first definition is as follows:

Rub — uh(:v), x; € (a,b),
o, r; = aorb.

Note that || R|| — oo as h — 0 which implies Cr — oo. This is not a good choice
for a possible restriction operator.

(2) Thus, we introduce another restriction operator. Let I : H}(Q) — H* () be the
natural restriction defined as follows:

(Iqu)(x) = u(z),z € Q Yu € H}(Q),

and It : H} (1) — R? be the trace operator defined by

Iru = mg] Vu € HI(ID).

Lett: R? — H!(Q) be the extension operator defined by

Now we define the restriction operator R : H}(IT) — H}(Q) by

R=1Io—tIp. (11.1)
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Clearly, we have the estimates
[u(a)| < Cllull gy, [u(d)| < Cllull gy,

and

b 2
u(b) — u(a
|t Irul :/a (((())_a)(z))dl' < CllullF -

This implies
[ Rullaro) < [[loullai@) + [[Hrull g < Crllullman

since || Iqul| g1 () < |[Iou| g1 (m). Note that the constant C'g is independent of h
in this case (FEM). It is easy to see that RTug = ug — 0 = ug for all ug € H}(Q).

Summarizing, only the definition of R in (11.1) leads to a restriction operator with
constant cg bounded independently of the meshsize h.

11.3 Dirichlet Boundary Condition (2-D Case)

Next, we consider the two-dimensional case. Let Hy = H}(Q), H = Hi(II), A =
—Aq and B = —Ay;. The operator T is defined as in the one-dimensional case, i.e. let
T : HY(Q) — HL(IT) with

Tu — u(z), x€Q,
0, x eI\ Q.

This gives Ct = 1. For the definition of R, we have generalize the definition in (11.1)
and introduce R = I — tIr, where t is the extension operator from Section 7.2. Then
we obtain a constant Cr (independent of h).

11.4 Mixed Boundary Condition (2-D case)

In the case of mixed boundary conditions, the ideas for the Dirichlet and the Neumann
case have to be combined. Let H'(Q) = {u € H'(Q)u(z) = 0,z € T'p}. Let
H = H}(IT), A = —Aq and B = —Ay. We consider the subdomains G and Gp in
the vicinity of I'y and I'p, respectively, such that

H\QZ@NUép
and B
8GDQFN:®, OGN NTp = 0.

Let Twpug = TnTpuo where the operator Tp : H'(Q) — H'(Q U Gp) for the
Dirichlet data is defined by

T = uo(x), =€,
pro— 0, r € Gp.

Note 33:
generalized or
to generalize?
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Next, by the trace theorem, there exists an operator Ty : H(QUGp) — H*(II). Now,
we define a restriction operator R by R = I — trty - Ip where I : Hi (1) — HY(Q)
and Ip : H{(IT) — HY?(Tp). We define t : H'/?(Tp) — H'/?(T) by

(tne)(—=s) = (1= 5)é(s)  for é(s) € H'/*(Ip).

Here (1 — s/D) is a linear cut-off function. We note that D is independent of h. For
tn, the estimate

Itn ol a2y < Cilloll gz,

can easily be proved. Let tp : H/?(I') — H'(Q) be the extension operator of Sec-
tion 7.2. Then we obtain the estimates

[Rull < [[Zall + l[toll - Ex ] - Mpull < Crllull ),

where Cp, is independent of h in the FEM case.

11.5 Unstructured and Nonuniform Grid (2-D Case)

In the previous sections, we have investigated the case of a structured grid. Here we
consider the case of an unstructured and nonuniform grid for €. In other words, we can
design a preconditioner for the differential operator on 2 from that on II. In the case
when (2 is not polygonal, though, we want to design a preconditioner from the uniform
grid differential operator on II. Let Q"¢ denote the uniform grid on II and h; be the
mesh size of Q" satisfying

hy < where 7rpi, = min 7.

1
~——7="min
\/5 z €QR
Here r; is the radius of the largest ball B(z;,r;) inscribed in the union of all elements
of the triangulation Q" sharing the vertex z;.
Let Ho = Hy(II") and H = H,(Q"). Let A= —Apn and B ~ —An, be defined
as in the previous sections. Now, we introduce a restriction operator

Rg : Hp(Q") — Hy(1T"), (11.2)

i.e. forany UM € Hp,(Q") the values u” € Hy,(IT") have to be defined. Let z; denote
the nodal point of II" and Z;; is the node of some Q;;. We set u”(z) = UM (Z, ;),
i.e., RUM = u" is a simple restriction. Next, we define the extension operator T :
H;,(TI") — Hj,(Q"#) by the following way:

Uht(2;5) = u(z), if 2; belongs to some Q;;,
1
Uht(2;5) = g(uh(zl) + ul(z2) + ul(z3)), otherwise .

With the condition on the mesh size there are only two cases. That is, there is a one-
to-one correspondence between II" and some subset Q" of Q™. Then we can see
that

RTu" = u" vul € Hy(1").
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Lemma 11.1 Let us assume that cirmin < hy, Le., hy is of order h. Then, there exist

two constants Cg and Cj? (independent of h) such that
IRQU" ||y < CRIU™ | grrqany  and || Tou" ||y < CFIlu"[[ (-

Proof. Using u" = RU", we can estimate

[ g1 ()
A (W{WM(2)? + (W (2i,)7 + (" (24,))7)
7. CIIP

+ (uh(zil) - uh(ziz))Q + (W (2i,) = u"(2,))* + (U (2,) — 0" (23,))%)
= X R+ U500

7 CIIP
2 h h 2 h h 2
+ Z 11 2J1 Zzlih) + (Ui2t’j2 o Ulsﬁh) + (Ulgﬁ,]% o Uilﬁajl) )
7 CIIP
Clearly,
hy
Do R+ (U )D) S UM, n (@),
; CITM
Next,
(Uﬁ“’ P UZ“’ j2)2 < some differences of neighbors
hy hg N2 hy hy N2
< Uil U)o+ U = U)"

Thus, there exists a constant C such that

h h h hy
Z ((Uilﬁﬂl o Ulz Jz) (Uizﬁ,Jz o Ula Js) (Uisnyjz o U'Ll Jl) ) < Gi|U™ ‘Hl(Qhﬁ

T CIIM

This completes the proof of the existence of Cr. The proof of the existence of Cr is
the same as the case of Cg. a

Let
Crswu = BRQ(=Agn, ) 'ROR' (11.3)
be the FSM preconditioner for unstructured grids. Using Theorem 10.1 twice and

Lemma 11.1, we have proved the following final result about the Fictitious space
method.

Theorem 11.2 Let Cgsm,,, be defined via (11.3). Then the spectral equivalence rela-
tion AQy, ~ Crsm,., holds.
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12 Fictitious Space Method and Multilevel ASM

In the previous section, the FSM-preconditioner Crswm ., (11.3) has been developed. For
this preconditioner, we have to solve a potential problem on a much simpler geometry.
In this section, we consider the following mixed boundary value problem:

2
0 ou
_ Z 87351-@”87]- + ap(z)u = f(x), z €,

1,7=1
u(z) =0, xz e T'p,
ou

%—l—o(x)uzo, x€ly,

where the diffusion matrix (aij)i j—1 18 symmetric and positive definite, and the coeffi-

cients ag and o are uniformly positive. Then, we introduce the corresponding bilinear
form

2
ou Ov
a(u,v) = /Q ijzzl 9, 02, + ap(z)uv | dr+ /FN o(x)uvds,

which satisfies the relations
a(u,v) = a(v,u) and a(u,u) = ||u\|§1,517 (12.1)

A flexible domain decomposition method was suggested in [4]. This method is not
optimal with respect to convergence rate, but it is simple to implement and can be very
effective for parabolic problems. To suggest an optimal algorithm we consider the

. . . —=h . .
following approach. We assume that the triangulation 2 = Uf\il T; 1s quasi-uniform

and shape regular with 0Q" = T UT% and T'% C Q,T'% C (R2\ Q). Also suppose
that by < 7yin/ 2+/2. We define an auxiliary mesh Q" by the miniLnum collection of
Qi; enclosing Q. Let 0Q" = S" with S" = 5% U S}, such that, if Q;; NT" # 0, then

S"NQ, €S5p and Sy =S"\Sh.
The operator induced by (12.1) is defined as
(Au,v) = a(u”,v").
Moreover, let B be an operator which satisfies
(BU,U) = [[U"|}1(gny VU™ € Ha(Q")

and
R : Hy(Q") — Hip(Q")

be defined via (11.2).
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Theorem 12.1 There exist two constants C1 and Cs, independent of h, such that
C1 (A7 u,v) < (RBT'RTu,v) < Co (A" u,u) V.
Proof. The proof is similar to the proof of Theorem 11.2. a

Remark 12.2 The condition hy < 7, /2v/2 instead of hy < 7min/V/2 is needed in the
mixed boundary case.

First we consider I'p = (), i.e. the case of pure Neumann boundary conditions.
Let us assume that hy = - 277 hy =1-27% k=0,1,...,J,and hy = hy, and that
we have a sequence of triangulations

h h h
L1001 (O 1 (4

and spaces 5
W cWhc...cwh=Hm,Q",

where W/ = {ul = 3. a® "} and ¢{* is a nodal basis. Let S" = 5%. Now, we
introduce the preconditioner in II via

J

- g k 7(k

BYUM =3 ST (06 pygm el (12.2)
k=0 {suppep (") nQh £}

where U" = U(Z, ;) for Z; ; € Q" and U" = 0 otherwise.

Theorem 12.3 Let By be defined via (12.2). Then there exist two constants C1 and
Cy, which are independent of h, such that

Co UM gy < (BNU,U) < Co U2 gny YU € Ha(Q").
Proof. Note that

J
By (Uh) =" (Uh, o) @ (BPX in1I),
k=0
RNUh — UH( )7 Zi,j € th
0, otherwise,
and
Ry = {I 0] .
Then we have Ry By' R}, = By' which proves the theorem. a

Next, we consider the case of Dirichlet boundary conditions (S = S%),i.e. [y =
(. Here, we define

B lyh — Z Z (Uh (I)(k)) (I )(bz(k)'

k=0 suppa*) c@h



Note 34:
¢ or (?
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Theorem 12.4 There exist two constants Cy and Csy, which are independent of h, such
that
CLIU 2oy < (BoU,U) < CollUM s oy YU € Ha(QP).

Proof. The proof is moved to the end of this section. Let us assume temporarily that
the theorem was proved already. a

At last we consider the case of mixed boundary conditions (S% # 0, S% # () and
define

J
By iU =YY" o), ma
k=0

as the BPX preconditioner. Note that the second summation is taken on the set
supp(®") N Q") # ¢ and supp(@") N S}) = .
Theorem 12.5 There exist positive constants C1 and Cy such that

ColUM 3 gny < (BuU,U) < Ca U131 gny VU € Ha(Q").

Proof. Note that IT"\ Q" = G, UG%; and G, NGY, = 0. We have that 9G,NS" = S},
and G" = Q" U G%,. Now we define

Hy(G") = {u"|u"(z) = 0,2 € dG"}.

Then we have by the previous case

J
_ k k
BplUb =" Y (ko) el
B=0 uppa () c G

and

CillGE i ) < (Bp.aUc,Uc) < CallUG NI (-
Furthermore, let us define Ry ¢ : Hy,(G") — Hj,(Q") by
Ut(Zij), Zij € QM

RncUL(Z; ;) =
~ncUc(Zi ;) {Q’ otherwise.

Then we finally have Ry, By Ry'g = By with Ry = [T 0]. 0

Now we are in a position to show Theorem 12.4 for the case of Dirichlet boundary
conditions. We define Wj, = W;,NH},(Q"). Then the proof of the theorem is completed
if the following conditions are satisfied:

(a) Forall u" € W, there exists u!") = o!¥®" such that

7 [ %
J

k k
Z Z ug ) — uh and « Z ||U,E )H%{1(Qh) < ||uh||?—11(Q)a
k=0 supp(uEM)CQ” supp(ugk))CQh

and,
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(b) for all u” € W, the inequality
. k
la" 3 gry < Bint 37 T on
supp(u{®))CQn
is valid, where the infimum is taken over all decompositions satisfying
J

>y e

=0 supp(u™)c Q™
The positive constants are supposed to be independent of A.

Now, in order to prove the above conditions (a) and (b), we need three lemmas. The
proof of each lemma is easy, so omitted. The first and second lemma imply the con-
dition (b) and the last lemma with the BPX preconditioner in II implies the condition
(a). Finally, we will now state the three lemmas.

Lemma 12.6 There exists C, independent of h, such that
Ik
(vvhv vwh)LQ(Ti) < C(l/\/i) |’U|H1(T7;)2le||L2(7'i)
for all triangles T; of the triangulation I} N SuppWy, vh € Wi, wh € Wy (1> k).

Lemma 12.7 For all u" = ul} + Zizl ull, ul € Wy, we have

J
"> < C(lug|Fgry + Z4k||UZ||2LZ(Qh))-
k=1
Lemma 12.8 For given u" € W;, we define i"(x) = u"(z) if = € Q", otherwise

@" = 0. Then, for a given decomposition

J
a =ao+§ U, U € Wi,

k=1
there exists a decomposition
J
uh=1L0—|— E ug, up € Wy
k=1

such that ;
|3, ony < Clltiol + Y likll3, )
k=1

for some constant C, independent of h.

Note 35:
Supp or supp?
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