Bemerkung 4. $4:$
1 Fehlerabschákungen?
2. Die aufwendigsten Schritte im Algorithmus 4.4 sinds

Schrit 3 : Matrixgenerierung

$$
\left.2 n^{2} \text { Matrix elemente }[a, y], \tilde{b}_{n j}\right]
$$

Schritt 4 : Lósung eines GS mit einer $\left.\begin{array}{l}\text { - vollbesetaten } \\ \text { inchitsymmetirschea }\end{array}\right\}$

Matrix der Dim. nan!
3. Verfahren zur Lösung des GS $K w=f$:
a) direktes Veifahisen (2.1s. Gauß):

$$
M=\text { Memory }=n^{2}+O(n) \text {, ops }=O\left(n^{3}\right)
$$

b) iterative Verfahien (GMRES,

$$
\begin{aligned}
& \text { ops }\left(K \times w^{k}\right)=O\left(n^{2}\right) \\
& I(\varepsilon)=? \\
& \text { ops }=I(\varepsilon), \text { ops }\left(K \times w^{k}\right) \\
& \text { Kondrhin }(K)=?
\end{aligned}
$$

Prakonditionierung G^{\prime} für $K: ?$
4. Verglerch zur FEM (2D) mit optimalea Löser (2.B. Mar):

$$
h=O(n-1), N_{B}=N_{B E H}=O\left(h^{-1}\right), N_{F}=N_{\text {FEH }}=O\left(h^{-2}\right)
$$

5. Analog: Kollokatiou iu 30 ! $M=0\left(h^{-4}\right)$, ops $(k \times u)=$
\Rightarrow Date-sparse $K \in M$ ist notwenders! $=O\left(h^{-4}\right)$

$$
M=O\left(h^{-2} \ln ^{-} h^{-1}\right) \text {, ops }=O\left(h^{-2} 8 n^{0} h^{-1}\right)!!? ?
$$

