ÜBUNGEN ZU

NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

für den 11. 1. 2006
Send your programs to zulehner@numa.uni-linz.ac.at by 9 a.m.
42. Use your functions to discretize the following one-dimensional boundary value problem
Find a function $u(x)$ such that

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \quad x \in \Omega, \\
u(x) & =g_{D}(x) \quad x \in \Gamma_{D}, \\
\frac{\partial u}{\partial n}(x) & =g_{N}(x) \quad x \in \Gamma_{N},
\end{aligned}
$$

with the data

$$
f(x)=8, \Omega=(0,1), \Gamma_{D}=\{0\}, g_{D}(x)=-1, \Gamma_{N}=\{1\}, g_{N}(x)=-4 .
$$

Then solve the discretized problem

$$
K_{h} \underline{u}_{h}=\underline{f}_{h}
$$

by the preconditioned gradient method and preconditioned conjugate gradient method with MDS preconditioner.
(a) How does the number of iterations n depend on the step size h and on the number of N_{h} of unknowns, respectively?
(b) How does the cpu time t depend on the step size h and on the number of N_{h} of unknowns, respectively?

