ÜBUNGEN ZU

NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

für den 14. 12. 2005
Send your programs to zulehner@numa.uni-linz.ac.at by 9 a.m.
Let \mathcal{T}_{l} be a subdivision of the interval $\Omega=(0,1)$, given by the nodes

$$
0=x_{l, 0}<x_{l, 1}<\ldots<x_{l . N_{l}}=1 .
$$

Let \mathcal{T}_{l+1} be the refined subdivision which is constructed from the subdivision \mathcal{T}_{l} by adding the midpoints of the sub-intervals of \mathcal{T}_{l}. If the nodes are numbered from left to right, we obviously have for the nodes $x_{l+1, i}$ of \mathcal{T}_{l+1} :

$$
\begin{aligned}
x_{l+1,2 i} & =x_{l, i}, \\
x_{l+1,2 i+1} & =\frac{1}{2}\left(x_{l, i}+x_{l, i+1}\right) .
\end{aligned}
$$

From this the following relation between the nodal basis functions of the Courant element with respect to the two subdivisons \mathcal{T}_{l} and \mathcal{I}_{l+1} can be easily derived for $0<i<N_{l}$:

$$
\varphi_{l, i}(x)=\frac{1}{2} \varphi_{l+1,2 i-1}(x)+\varphi_{l+1,2 i}(x)+\frac{1}{2} \varphi_{l+1,2 i+1}(x) .
$$

36. Let w_{l} be a finite element function on the coarse grid \mathcal{T}_{l}. Then

$$
w_{l}(x)=\sum_{i=0}^{N_{l}} w_{l, i} \varphi_{l, i}(x)
$$

Find a representation of this function with the help of the basis functions of the fine grid \mathcal{T}_{l+1} : Compute the coefficients $w_{l+1, i}$ such that

$$
w_{l}(x)=\sum_{i=0}^{N_{l+1}} w_{l+1, i} \varphi_{l+1, i}(x) .
$$

Represent the relation between the coefficient vectors $\underline{w}_{l+1}=\left(w_{l+1, i}\right)_{i=0, \ldots, N_{l+1}}$ and $\underline{w}_{l}=\left(w_{l, i}\right)_{i=0, \ldots, N_{l}}$ in the form

$$
\underline{w}_{l+1}=I_{l}^{l+1} \underline{w}_{l}
$$

with an appropriate $N_{l+1} \times N_{l}$ matrix I_{l}^{l+1}.
37. Let $R: H^{1}(0,1) \longrightarrow \mathbb{R}$ be a continuous linear functional. The evaluation of R for some finite element function v_{l+1} on the fine grid \mathcal{T}_{l+1} can be represented in the following form:

$$
\left\langle R, v_{l+1}\right\rangle=\sum_{i=0}^{N_{l+1}} r_{l+1, i} v_{l+1, i}=\left(\underline{r}_{l+1}, \underline{v}_{l+1}\right)_{\ell_{2}}
$$

with

$$
\underline{r}_{l+1}=\left(r_{l+1, i}\right)_{i=0, \ldots, N_{l+1}}, \quad \text { and } \quad r_{l+1, i}=\left\langle R, \varphi_{l+1, i}\right\rangle .
$$

Find a representation of the evaluation of this functional for a finite element function v_{l}, defined on the coarse grid \mathcal{T}_{l} in the form

$$
\left\langle R, v_{l}\right\rangle=\sum_{i=0}^{N_{l}} r_{l, i} v_{l, i}=\left(\underline{r}_{l}, \underline{v}_{l}\right)_{\ell_{2}} .
$$

Show the following relation between the coefficient vectors $\underline{r}_{l+1}=\left(r_{l+1, i}\right)_{i=0, \ldots, N_{l+1}}$ and $\underline{r}_{l}=\left(r_{l, i}\right)_{i=0, \ldots, N_{l}}$

$$
\underline{r}_{l}=I_{l+1}^{l} \underline{r}_{l+1} \quad \text { with } \quad I_{l+1}^{l}=\left(I_{l}^{i+1}\right)^{T} .
$$

Hint:

$$
\left(\underline{r}_{l}, \underline{v}_{l}\right)_{\ell_{2}}=\left\langle R, v_{l}\right\rangle=\left(\underline{r}_{l+1}, \underline{v}_{l+1}\right)_{\ell_{2}}=\left(\underline{r}_{l+1}, I_{l}^{l+1} \underline{v}_{l}\right)_{\ell_{2}}
$$

38. Show the following relation

$$
K_{l}=I_{l+1}^{l} K_{l+1} I_{l}^{l+1}=\left(I_{l}^{l+1}\right)^{T} K_{l+1} I_{l}^{l+1}
$$

where K_{l} and K_{l+1} denote the stiffness matrices on the coarse grid \mathcal{T}_{l} and on the fine grid \mathcal{T}_{l+1}, respectively.
Hint: For finite element functions w_{l} und v_{l} on the coarse grid we have

$$
a\left(w_{h}, v_{h}\right)=\left(K_{l} \underline{w}_{l}, \underline{v}_{l}\right)_{\ell_{2}} .
$$

On the other hand, these finite element functions are also finite element functions on the fine grid, hence

$$
a\left(w_{h}, v_{h}\right)=\left(K_{l+1} \underline{w}_{l+1}, \underline{v}_{l+1}\right)_{\ell_{2}} .
$$

39. Write a function RefineUniform(\downarrow coarsemesh, \uparrow finemesh), which computes the refined subdivision finemesh $=\mathcal{T}_{l+1}$ from a coarse subdivision coarsemesh $=\mathcal{T}_{l}$ as described above.
40. Write a function Prolongate(\downarrow coarsevector, \uparrow finevector) for computing $\underline{w}_{l+1}=$ $I_{l}^{l+1} \underline{w}_{l}$ with finevector $=\underline{w}_{l+1}$ and coarsevector $=\underline{w}_{l}$.
Write a function Restrict (\downarrow finevector, \uparrow coarsevector) for computing $\underline{r}_{l}=I_{l+1}^{l} \underline{r}_{l+1}$ with finevector $=\underline{r}_{l+1}$ and coarsevector $=\underline{r}_{l}$.
41. Implement the MDS preconditioner for a hierarchy of L grids $\mathcal{T}_{1}, \ldots, \mathcal{T}_{L}$:
(a) If there is only one grid $\mathcal{T}_{1}(L=1)$, then the MDS preconditioner coindices with the Jacobi preconditioner, i.e.:

$$
\underline{w}_{1}=D_{1}^{-1} \underline{r}_{1} .
$$

(b) For a hierarchy of two grids $\mathcal{T}_{1}, \mathcal{T}_{2}(L=2)$ the correction \underline{w}_{2}, obtained by the MDS preconditioner for a given residual \underline{r}_{2}, is the sum of the correction, obtained by the Jacobi preconditioner on the fine grid for the residual \underline{r}_{2}, and the (prolongated) correction, obtained by the Jacobi preconditioner on the coarse grid for the (restricted) residual \underline{r}_{1}, i.e.:

$$
\underline{w}_{2}=D_{2}^{-1} \underline{r}_{2}+I_{1}^{2} \underline{w}_{1}
$$

with

$$
\underline{w}_{1}=D_{1}^{-1} \underline{r}_{1} \quad \text { for } \quad \underline{r}_{1}=I_{2}^{1} \underline{r}_{2} .
$$

(c) For a hierarchy of L grids $\mathcal{T}_{1}, \ldots, \mathcal{T}_{L}$ the correction \underline{w}_{L}, obtained by the MDS preconditioner for a given residual \underline{r}_{L}, is the sum of the correction, obtained by the Jacobi preconditioner on the grid \mathcal{T}_{L} for the residual \underline{r}_{L}, and the (prolongated) correction, obtained by the MDS preconditioner on the grid \mathcal{T}_{L-1} for the (restricted) residual \underline{r}_{L-1}, i.e.:

$$
\underline{w}_{L}=C_{L}^{-1} \underline{r}_{L}=D_{L}^{-1} \underline{r}_{L}+I_{L-1}^{L} \underline{w}_{L}
$$

with

$$
\underline{w}_{L-1}=C_{L-1}^{-1} \underline{r}_{L-1} \quad \text { für } \quad \underline{r}_{L-1}=I_{L}^{L-1} \underline{r}_{L} .
$$

Hint: Use a recursive function of the following form:

```
MDS(l,r,w) {
    if (l == 1)
        w = JacobiPreconditioner.solve(l,r);
    else {
        w = JacobiPreconditioner.solve(l,r);
        Restrict(r,r_coarse);
        MDS(l-1,r_coarse,w_coarse);
        Prolongate(w_coarse,w_fine);
        w += w_fine;
    }
};
```

