
ÜBUNGEN ZU

NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

für den 14. 12. 2005
Send your programs to zulehner@numa.uni-linz.ac.at by 9 a.m.

Let Tl be a subdivision of the interval Ω = (0, 1), given by the nodes

0 = xl,0 < xl,1 < . . . < xl.Nl
= 1.

Let Tl+1 be the refined subdivision which is constructed from the subdivision Tl by adding
the midpoints of the sub-intervals of Tl. If the nodes are numbered from left to right, we
obviously have for the nodes xl+1,i of Tl+1:

xl+1,2i = xl,i,

xl+1,2i+1 =
1

2
(xl,i + xl,i+1).

From this the following relation between the nodal basis functions of the Courant element
with respect to the two subdivisons Tl and Tl+1 can be easily derived for 0 < i < Nl:

ϕl,i(x) =
1

2
ϕl+1,2i−1(x) + ϕl+1,2i(x) +

1

2
ϕl+1,2i+1(x).

36. Let wl be a finite element function on the coarse grid Tl. Then

wl(x) =

Nl
∑

i=0

wl,i ϕl,i(x).

Find a representation of this function with the help of the basis functions of the fine
grid Tl+1: Compute the coefficients wl+1,i such that

wl(x) =

Nl+1
∑

i=0

wl+1,i ϕl+1,i(x).

Represent the relation between the coefficient vectors wl+1 = (wl+1,i)i=0,...,Nl+1
and

wl = (wl,i)i=0,...,Nl
in the form

wl+1 = I l+1

l wl

with an appropriate Nl+1 × Nl matrix I l+1

l .

37. Let R : H1(0, 1) −→ R be a continuous linear functional. The evaluation of R for
some finite element function vl+1 on the fine grid Tl+1 can be represented in the
following form:

〈R, vl+1〉 =

Nl+1
∑

i=0

rl+1,i vl+1,i = (rl+1, vl+1)`2

1



with
rl+1 = (rl+1,i)i=0,...,Nl+1

, and rl+1,i = 〈R, ϕl+1,i〉.

Find a representation of the evaluation of this functional for a finite element function
vl, defined on the coarse grid Tl in the form

〈R, vl〉 =

Nl
∑

i=0

rl,i vl,i = (rl, vl)`2 .

Show the following relation between the coefficient vectors rl+1 = (rl+1,i)i=0,...,Nl+1

and rl = (rl,i)i=0,...,Nl

rl = I l
l+1rl+1 with I l

l+1 =
(

I i+1

l

)T
.

Hint:
(rl, vl)`2 = 〈R, vl〉 = (rl+1, vl+1)`2 = (rl+1, I

l+1

l vl)`2

38. Show the following relation

Kl = I l
l+1Kl+1I

l+1

l =
(

I l+1

l

)T
Kl+1I

l+1

l .

where Kl and Kl+1 denote the stiffness matrices on the coarse grid Tl and on the fine
grid Tl+1, respectively.

Hint: For finite element functions wl und vl on the coarse grid we have

a(wh, vh) = (Klwl, vl)`2 .

On the other hand, these finite element functions are also finite element functions on
the fine grid, hence

a(wh, vh) = (Kl+1wl+1, vl+1)`2.

39. Write a function RefineUniform(↓coarsemesh,↑finemesh), which computes the
refined subdivision finemesh = Tl+1 from a coarse subdivision coarsemesh = Tl as
described above.

40. Write a function Prolongate(↓coarsevector,↑finevector) for computing w l+1 =
I l+1

l wl with finevector = wl+1 and coarsevector = wl.

Write a function Restrict(↓finevector,↑coarsevector) for computing r l = I l
l+1

rl+1

with finevector = rl+1 and coarsevector = rl.

41. Implement the MDS preconditioner for a hierarchy of L grids T1, . . . , TL:

(a) If there is only one grid T1 (L = 1), then the MDS preconditioner coindices with
the Jacobi preconditioner, i.e.:

w1 = D−1

1 r1.

2



(b) For a hierarchy of two grids T1, T2 (L = 2) the correction w2, obtained by
the MDS preconditioner for a given residual r2, is the sum of the correction,
obtained by the Jacobi preconditioner on the fine grid for the residual r2, and the
(prolongated) correction, obtained by the Jacobi preconditioner on the coarse
grid for the (restricted) residual r1, i.e.:

w2 = D−1

2 r2 + I2

1w1

with
w1 = D−1

1 r1 for r1 = I1

2r2.

(c) For a hierarchy of L grids T1, . . . , TL the correction wL, obtained by the MDS
preconditioner for a given residual rL, is the sum of the correction, obtained by
the Jacobi preconditioner on the grid TL for the residual rL, and the (prolonga-
ted) correction, obtained by the MDS preconditioner on the grid TL−1 for the
(restricted) residual rL−1, i.e.:

wL = C−1

L rL = D−1

L rL + IL
L−1wL

with
wL−1 = C−1

L−1
rL−1 für rL−1 = IL−1

L rL.

Hint: Use a recursive function of the following form:

MDS(l,r,w) {
...

if (l == 1)

w = JacobiPreconditioner.solve(l,r);

else {
w = JacobiPreconditioner.solve(l,r);

Restrict(r,r coarse);

MDS(l-1,r coarse,w coarse);

Prolongate(w coarse,w fine);

w += w fine;

}
};

3


