ÜBUNGEN ZU

NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

für den 16. 11. 2005
Send your programs to zulehner@numa.uni-linz.ac.at by 9 a.m.
19. Write a function ImplementNeumannBC($\downarrow \mathrm{i}, \downarrow \mathrm{g}$, \uparrow vector) to implement a Neumann boundary condition

$$
\frac{\partial u}{\partial n}\left(x_{i}\right)=g_{N}\left(x_{i}\right),
$$

for a given value $\mathrm{g}=g_{N}\left(x_{i}\right)$ at the boundary node x_{i} identified by its node number $=i$ by updating the input vector $=\underline{f}_{h}$, previously computed by using LoadVector for the case of homogenous Neumann conditions only.
20. Write a function ImplementDirichletBC($\downarrow \mathrm{i}, \downarrow \mathrm{g}, \uparrow$ matrix, \uparrow vector) to implement a Dirichlet boundary condition

$$
u\left(x_{i}\right)=g_{D}\left(x_{i}\right),
$$

for a given value $\mathrm{g}=g_{D}\left(x_{i}\right)$ at the boundary node x_{i} identified by its index $\mathrm{i}=i$ by updating the input matrix $=K_{h}$ and vector $=\underline{f}_{h}$, previously computed by using StiffnessMatrix, LoadVector and ImplementNeumannBC for the case of Neumann boundary conditions only.

Hint: Assume that the following equation is obtained after applying StiffnessMatrix, LoadVector and ImplementNeumannBC:

$$
\left(\begin{array}{lll}
K_{00} & K_{01} & K_{02} \\
K_{10} & K_{11} & K_{12} \\
K_{20} & K_{21} & K_{22}
\end{array}\right)\left(\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2}
\end{array}\right)=\left(\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2}
\end{array}\right)
$$

and we want to fix the value at x_{0} :

$$
u_{0}=u\left(x_{0}\right)=g_{G}\left(x_{0}\right)=g_{0} .
$$

This can be done by replacing the first equation by the simple equation $K_{00} u_{0}=K_{00} g_{0}$ and by substituting u_{0} by g_{0} in the other equations. This results in the new updated system

$$
\left(\begin{array}{ccc}
K_{00} & 0 & 0 \\
0 & K_{11} & K_{12} \\
0 & K_{21} & K_{22}
\end{array}\right)\left(\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2}
\end{array}\right)=\left(\begin{array}{c}
K_{00} g_{0} \\
f_{1}-K_{10} g_{0} \\
f_{2}-K_{20} g_{0}
\end{array}\right) .
$$

21. Write a function Mult (\downarrow matrix, \downarrow vector,\uparrow product) which returns the matrix-vector product $K u(=$ product $)$ of the matrix K (= matrix) and the vector u (= vector), where K is a given tridiagonal matrix, implemented by the data type Matrix, and u is a given vector. In C++ this could also be done either by writing an appropriate member function for the class Matrix or by overloading the operator $*$.
22. Define a data type Preconditioner by using struct in C or class in $\mathrm{C}++$, which contains all information needed for the Jacobi preconditioner $C_{h}=D_{h}=\operatorname{diag}\left(K_{h}\right)$. Write a function (or a member function of the class Preconditioner in $\mathrm{C}++$), which solves the equation

$$
C_{h} \underline{w}_{h}=\underline{r}_{h}
$$

for $C_{h}=D_{h}$ and a given vector \underline{r}_{h}.
Test your functions for a simple example.
23. Let

$$
\hat{K}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right), \quad \hat{M}=\left(\begin{array}{cc}
1 / 3 & 1 / 6 \\
1 / 6 & 1 / 3
\end{array}\right), \quad \hat{D}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Show that

$$
\frac{1}{6} \hat{D} \leq \hat{M} \quad \text { and } \quad \hat{K} \leq 2 \hat{D}
$$

24. Consider the one-dimensional boundary value problem

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \quad x \in(0,1), \\
u(0) & =g_{0}, \\
u^{\prime}(1) & =g_{1} .
\end{aligned}
$$

Let K_{h} be the stiffness matrix obtained by the finite element with the Courant element on a subdivision given by $0=x_{0}<x_{1}<\cdots<x_{N_{h}}=1$.

Show that

$$
\frac{\min _{k} h_{k}^{2}}{6 c_{F}^{2}} D_{h} \leq K_{h} \leq 2 D_{h}
$$

with $D_{h}=\operatorname{diag}\left(K_{h}\right), c_{F}$ the constant from Friedrichs' inequality, and $h_{k}=x_{k}-x_{k-1}$. Hint: Use

$$
\left(D_{h} \underline{v}_{h}, \underline{v}_{h}\right)_{\ell_{2}}=D_{h}^{(1)} v_{1}^{2}+\sum_{k=2}^{N_{h}}\left(D_{h}^{(k)}\binom{v_{k-1}}{v_{k}},\binom{v_{k-1}}{v_{k}}\right)_{\ell_{2}}
$$

with

$$
D_{h}^{(1)}=K_{h}^{(1)}=\frac{1}{h_{1}} \quad \text { and } \quad D_{h}^{(k)}=\operatorname{diag}\left(K_{h}^{(k)}\right)=\frac{1}{h_{k}} \operatorname{diag}(\hat{K})=\frac{1}{h_{k}} \hat{D} .
$$

