ÜBUNGEN ZU

NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

für den 9. 11. 2005

Send your programs to zulehner@numa.uni-linz.ac.at by 9 a.m.

A first task of the programming exercises is the development of a program for solving the following one-dimensional boundary value problem:

Let $\Omega = (0, 1), \Gamma = \partial \Omega = \{0, 1\} = \Gamma_D \cup \Gamma_N$ with $\Gamma_D \cap \Gamma_N = \emptyset$. Find a function u(x) such that

$$-u''(x) = f(x) \quad x \in \Omega,$$

$$u(x) = g_D(x) \quad x \in \Gamma_D,$$

$$\frac{\partial u}{\partial n}(x) = g_N(x) \quad x \in \Gamma_N.$$

This problem is discretized by the finite element method with the Courant element: The nodes

$$0 = x_0 < \ldots < x_{N_h} = 1$$

define a subdivision \mathcal{T}_h of [0,1] with sub-intervals $T_k = (x_{k-1}, x_k)$ for $k = 1, \ldots, N_h$. The nodal basis is given by $\{\varphi_i : i = 0, 1, \ldots, N_h\}$ with $\varphi_i \in V_h = \{v \in C(\overline{\Omega}) : v|_T \in P_1 \text{ for all } T \in \mathcal{T}_h\}$ and $\varphi_i(x_j) = \delta_{ij}$.

In the following exercises input parameters of functions are denoted by \downarrow , output parameters by \uparrow and input/output parameters by \uparrow .

13. Write a function ElementStiffnessMatrix($\downarrow xa, \downarrow xb, \uparrow element_matrix$) which, for $xa = x_{k-1}$ and $xb = x_k$ returns the 2-by-2 element stiffness matrix element_matrix = $K_h^{(k)}$ for the element T_k , given by

$$K_{h}^{(k)} = \begin{pmatrix} \int_{T_{k}} \varphi_{k-1}'(x)^{2} dx & \int_{T_{k}} \varphi_{k-1}'(x)\varphi_{k}'(x) dx \\ \int_{T_{k}} \varphi_{k}'(x)\varphi_{k-1}'(x) dx & \int_{T_{k}} \varphi_{k}'(x)^{2} dx \end{pmatrix}$$

14. Write a function ElementLoadVector(\downarrow (*f)(x), \downarrow xa, \downarrow xb, \uparrow element_vector) which, for xa = x_{k-1} and xb = x_k , returns the 2-dimensional element load vector element_vector = $f_h^{(k)}$ for the element T_k , given by

$$\underline{f}_{h}^{(k)} = \begin{pmatrix} \int_{T_{k}} f(x)\varphi_{k-1}(x) \, dx \\ \int_{T_{k}} f(x)\varphi_{k}(x) \, dx \end{pmatrix}.$$

Use the trapezoidal rule

$$\int_{a}^{b} g(x) \, dx \approx \frac{b-a}{2} \left[g(a) + g(b) \right]$$

for approximating the integrals.

- 15. Define a data type Mesh for subdivisions (meshes) by using struct in C (or class in C++). The data type must contain all information about a subdivision \mathcal{T}_h .
- 16. Define an efficient data type Matrix for stiffness matrices K_h (in the one-dimensional case) by using struct in C (or class in C++).

Hint: K_h is a tridiagonal matrix.

17. Write a function StiffnessMatrix($\downarrow mesh$, $\uparrow matrix$) which assembles the (global) stiffness matrix $matrix = K_h$ for a given subdivision $mesh = \mathcal{T}_h$.

For assembling K_h , start with $K_h = 0$ and use a loop over all elements to successively update K_h . On each element T_k , call the function ElementStiffnessMatrix to compute $K_h^{(k)}$ and update K_h by adding the entries of $K_h^{(k)}$ at the appropriate positions.

Consider only the case of the following boundary conditions: $\Gamma_D = \emptyset$, $\Gamma_N = \{0, 1\}$ and $g_N = 0$.

18. Write a function LoadVector(\downarrow (*f)(x), \downarrow mesh, \uparrow vector) which assembles the (global) load vector vector = f_h for a given subdivision mesh = \mathcal{T}_h .

For assembling \underline{f}_h , start with $\underline{f}_h = 0$ and use a loop over all elements to successively update \underline{f}_h . On each element \overline{T}_k , call the function ElementLoadVector to compute $\underline{f}_h^{(k)}$ and update \underline{f}_h by adding the entries of $\underline{f}_h^{(k)}$ at the appropriate positions.

Consider only the case of the following boundary conditions: $\Gamma_D = \emptyset$, $\Gamma_N = \{0, 1\}$ and $g_N = 0$.

Test your data types and functions for a simple example.