
ÜBUNGEN ZU

NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

für den 9. 11. 2005
Send your programs to zulehner@numa.uni-linz.ac.at by 9 a.m.

A first task of the programming exercises is the developement of a program for solving the
following one-dimensional boundary value problem:

Let Ω = (0, 1), Γ = ∂Ω = {0, 1} = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅.
Find a function u(x) such that

−u′′(x) = f(x) x ∈ Ω,

u(x) = gD(x) x ∈ ΓD,

∂u

∂n
(x) = gN(x) x ∈ ΓN .

This problem is discretized by the finite element method with the Courant element:
The nodes

0 = x0 < . . . < xNh
= 1

define a subdivision Th of [0, 1] with sub-intervals Tk = (xk−1, xk) for k = 1, . . . , Nh. The
nodal basis is given by {ϕi : i = 0, 1, . . . , Nh} with ϕi ∈ Vh = {v ∈ C(Ω) : v|T ∈
P1 for all T ∈ Th} and ϕi(xj) = δij.

In the following exercises input parameters of functions are denoted by ‘↓’, output
parameters by ‘↑’ and input/output parameters by ‘l’.

13. Write a function ElementStiffnessMatrix(↓xa,↓xb,↑element matrix) which, for
xa = xk−1 and xb = xk returns the 2-by-2 element stiffness matrix element matrix =

K
(k)
h for the element Tk, given by

K
(k)
h =









∫

Tk

ϕ′

k−1(x)2 dx

∫

Tk

ϕ′

k−1(x)ϕ′

k(x) dx

∫

Tk

ϕ′

k(x)ϕ′

k−1(x) dx

∫

Tk

ϕ′

k(x)2 dx









.

14. Write a function ElementLoadVector(↓(*f)(x),↓xa,↓xb,↑element vector) which,
for xa = xk−1 and xb = xk, returns the 2-dimensional element load vector

element vector = f
(k)
h for the element Tk, given by

f (k)

h
=









∫

Tk

f(x)ϕk−1(x) dx

∫

Tk

f(x)ϕk(x) dx









.

1



Use the trapezoidal rule

∫ b

a

g(x) dx ≈
b − a

2
[g(a) + g(b)]

for approximating the integrals.

15. Define a data type Mesh for subdivisions (meshes) by using struct in C (or class

in C++). The data type must contain all information about a subdivision Th.

16. Define an efficient data type Matrix for stiffness matrices Kh (in the one-dimensional
case) by using struct in C (or class in C++).

Hint: Kh is a tridiagonal matrix.

17. Write a function StiffnessMatrix(↓mesh,↑matrix) which assembles the (global)
stiffness matrix matrix = Kh for a given subdivision mesh = Th.

For assembling Kh, start with Kh = 0 and use a loop over all elements to succes-
sively update Kh. On each element Tk, call the function ElementStiffnessMatrix

to compute K
(k)
h and update Kh by adding the entries of K

(k)
h at the appropriate

positions.

Consider only the case of the following boundary conditions: ΓD = ∅, ΓN = {0, 1}
and gN = 0.

18. Write a function LoadVector(↓(*f)(x),↓mesh,↑vector) which assembles the (glo-
bal) load vector vector = f

h
for a given subdivision mesh = Th.

For assembling f
h
, start with f

h
= 0 and use a loop over all elements to successively

update f
h
. On each element Tk, call the function ElementLoadVector to compute

f (k)

h
and update f

h
by adding the entries of f (k)

h
at the appropriate positions.

Consider only the case of the following boundary conditions: ΓD = ∅, ΓN = {0, 1}
and gN = 0.

Test your data types and functions for a simple example.

2


