ÜBUNGEN ZU

NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

für den 9. 11. 2005
Send your programs to zulehner@numa.uni-linz.ac.at by 9 a.m.

A first task of the programming exercises is the developement of a program for solving the following one-dimensional boundary value problem:

Let $\Omega=(0,1), \Gamma=\partial \Omega=\{0,1\}=\Gamma_{D} \cup \Gamma_{N}$ with $\Gamma_{D} \cap \Gamma_{N}=\emptyset$.
Find a function $u(x)$ such that

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \quad x \in \Omega, \\
u(x) & =g_{D}(x) \quad x \in \Gamma_{D}, \\
\frac{\partial u}{\partial n}(x) & =g_{N}(x) \quad x \in \Gamma_{N} .
\end{aligned}
$$

This problem is discretized by the finite element method with the Courant element: The nodes

$$
0=x_{0}<\ldots<x_{N_{h}}=1
$$

define a subdivision \mathcal{T}_{h} of $[0,1]$ with sub-intervals $T_{k}=\left(x_{k-1}, x_{k}\right)$ for $k=1, \ldots, N_{h}$. The nodal basis is given by $\left\{\varphi_{i}: i=0,1, \ldots, N_{h}\right\}$ with $\varphi_{i} \in V_{h}=\left\{v \in C(\bar{\Omega}):\left.v\right|_{T} \in\right.$ P_{1} for all $\left.T \in \mathcal{T}_{h}\right\}$ and $\varphi_{i}\left(x_{j}\right)=\delta_{i j}$.

In the following exercises input parameters of functions are denoted by ' \downarrow ', output parameters by ' \uparrow ' and input/output parameters by ' \uparrow '.
13. Write a function ElementStiffnessMatrix ($\downarrow \mathrm{xa}, \downarrow \mathrm{xb}, \uparrow$ element_matrix) which, for $\mathrm{xa}=x_{k-1}$ and $\mathrm{xb}=x_{k}$ returns the 2 -by-2 element stiffness matrix element_matrix $=$ $K_{h}^{(k)}$ for the element T_{k}, given by

$$
K_{h}^{(k)}=\left(\begin{array}{cc}
\int_{T_{k}} \varphi_{k-1}^{\prime}(x)^{2} d x & \int_{T_{k}} \varphi_{k-1}^{\prime}(x) \varphi_{k}^{\prime}(x) d x \\
\int_{T_{k}} \varphi_{k}^{\prime}(x) \varphi_{k-1}^{\prime}(x) d x & \int_{T_{k}} \varphi_{k}^{\prime}(x)^{2} d x
\end{array}\right) .
$$

14. Write a function ElementLoadVector ($\downarrow(* \mathrm{f})(\mathrm{x}), \downarrow \mathrm{xa}, \downarrow \mathrm{xb}, \uparrow$ element_vector) which, for $\mathrm{xa}=x_{k-1}$ and $\mathrm{xb}=x_{k}$, returns the 2-dimensional element load vector element_vector $=f_{h}^{(k)}$ for the element T_{k}, given by

$$
\underline{f}_{h}^{(k)}=\binom{\int_{T_{k}} f(x) \varphi_{k-1}(x) d x}{\int_{T_{k}} f(x) \varphi_{k}(x) d x} .
$$

Use the trapezoidal rule

$$
\int_{a}^{b} g(x) d x \approx \frac{b-a}{2}[g(a)+g(b)]
$$

for approximating the integrals.
15. Define a data type Mesh for subdivisions (meshes) by using struct in C (or class in $\mathrm{C}++$). The data type must contain all information about a subdivision \mathcal{T}_{h}.
16. Define an efficient data type Matrix for stiffness matrices K_{h} (in the one-dimensional case) by using struct in C (or class in C++).

Hint: K_{h} is a tridiagonal matrix.
17. Write a function StiffnessMatrix (\downarrow mesh, \uparrow matrix) which assembles the (global) stiffness matrix matrix $=K_{h}$ for a given subdivision mesh $=\mathcal{T}_{h}$.
For assembling K_{h}, start with $K_{h}=0$ and use a loop over all elements to successively update K_{h}. On each element T_{k}, call the function ElementStiffnessMatrix to compute $K_{h}^{(k)}$ and update K_{h} by adding the entries of $K_{h}^{(k)}$ at the appropriate positions.
Consider only the case of the following boundary conditions: $\Gamma_{D}=\emptyset, \Gamma_{N}=\{0,1\}$ and $g_{N}=0$.
18. Write a function LoadVector $(\downarrow(* f)(\mathrm{x}), \downarrow$ mesh, \uparrow vector) which assembles the (global) load vector vector $=\underline{f}_{h}$ for a given subdivision mesh $=\mathcal{T}_{h}$.
For assembling \underline{f}_{h}, start with $\underline{f}_{h}=0$ and use a loop over all elements to successively update \underline{f}_{h}. On each element \bar{T}_{k}^{h}, call the function ElementLoadVector to compute $\underline{f}_{h}^{(k)}$ and update \underline{f}_{h} by adding the entries of $\underline{f}_{h}^{(k)}$ at the appropriate positions. Consider only the case of the following boundary conditions: $\Gamma_{D}=\emptyset, \Gamma_{N}=\{0,1\}$ and $g_{N}=0$.

Test your data types and functions for a simple example.

