ÜBUNGEN ZU

NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

für den 19. 10. 2005
7. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with boundary $\Gamma=\Gamma_{D} \cup \Gamma_{N}$. Find the variational formulation ($V=$?, $V_{0}=$?, $V_{g}=$?, $a=$?, $F=$?) for the following boundary value problem:

$$
\begin{aligned}
-\Delta u(x) & =f(x) \quad x \in \Omega \\
u(x) & =g_{D}(x) \quad x \in \Gamma_{D}, \\
\frac{\partial u}{\partial n}(x) & =g_{N}(x) \quad x \in \Gamma_{N} .
\end{aligned}
$$

8. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with boundary Γ. The scalar product in the Hilbert space $H=L^{2}(\Omega)$ is given by

$$
(w, v)_{0}=\int_{\Omega} w(x) v(x) d x
$$

The scalar product in the Hilbert space $V=H^{1}(\Omega)$ is given by $(w, v)_{1}=(w, v)_{0}+(\operatorname{grad} w, \operatorname{grad} v)_{0}=\int_{\Omega} w(x) v(x) d x+\int_{\Omega} \operatorname{grad} w(x) \cdot \operatorname{grad} v(x) d x$.

Let $f \in L^{2}(\Omega)$. Consider the variational problem:
Find $u \in V$ such that

$$
(u, v)_{1}=(f, v)_{0} \quad \text { for all } v \in V .
$$

What is the corresponding boundary value problem in classical formulation?
9. Let $\Omega=(0,1) \times(0,1)$ and $\Gamma_{D}=\{0\} \times[0,1]$. Show the Friedrichs inequality: There is a constant $C_{P}>0$ with

$$
\|v\|_{0} \leq C_{P}|v|_{1} \quad \text { for all } v \in V_{0}=\left\{w \in H^{1}(0,1): w(x)=0 \text { on } \Gamma_{D}\right\} .
$$

10. To each real n-by- n matrix A a bilinear form a, given by

$$
a(w, v)=(A w, v)_{\ell_{2}} \quad \text { for all } w, v \in \mathbb{R}^{n}
$$

can be uniquely associated and vice versa. Here, (., . $)_{\ell_{2}}$ denotes the Euclidean scalar product with corresponding Euclidean norm $\|.\|_{\ell_{2}}$. The smallest possible bound μ_{2}, which satisfies the condition

$$
|a(w, v)| \leq \mu_{2}\|w\|_{\ell_{2}}\|v\|_{\ell_{2}} \quad \text { for all } w, v \in \mathbb{R}^{n}
$$

is obviously given by the quantity

$$
\sup _{0 \neq w \in \mathbb{R}^{n}} \sup _{0 \neq v \in \mathbb{R}^{n}} \frac{a(w, v)}{\|w\|_{\ell_{2}}\|v\|_{\ell_{2}}} .
$$

Show that

$$
\sup _{0 \neq w \in \mathbb{R}^{n}} \sup _{0 \neq v \in \mathbb{R}^{n}} \frac{a(w, v)}{\|w\|_{\ell_{2}}\|v\|_{\ell_{2}}}=\sigma_{\max }(A)
$$

where $\sigma_{\max }(A)$ denotes the largest singular value of A.
Hint: Without proof you can use that each real matrix A can be written in the following form: $A=U \Sigma V^{T}$ with orthogonal matrices U and V and a diagonal matrix Σ, whose diagonal elements are the (non-negative) singular values. Replace w by $V \widetilde{w}$ and v by $U \widetilde{v}$ and observe that $\|w\|_{\ell_{2}}=\|\widetilde{w}\|_{\ell_{2}}$ and $\|v\|_{\ell_{2}}=\|\widetilde{v}\|_{\ell_{2}}$.
11. Assume the notations in the previous example. The largest possible bound μ_{1}, which satisfies the condition

$$
a(v, v) \geq \mu_{1}\|v\|_{\ell_{2}}^{2} \quad \text { for all } v \in \mathbb{R}^{n}
$$

is obviously given by the quantity

$$
\inf _{0 \neq v \in \mathbb{R}^{n}} \frac{a(v, v)}{\|v\|_{\ell_{2}}^{2}}
$$

Show that

$$
\inf _{0 \neq v \in \mathbb{R}^{n}} \frac{a(v, v)}{\|v\|_{\ell_{2}}^{2}}=\lambda_{\min }\left(A_{s}\right)
$$

where $\lambda_{\text {min }}\left(A_{s}\right)$ denotes the smallest eigenvalue of the (symmetric) matrix $A_{s}=$ $\left(A+A^{T}\right) / 2$.
Hint: Show that $(A v, v)_{\ell_{2}}=\left(A_{s} v, v\right)_{\ell_{2}}$ and use the representation $A_{s}=U D U^{T}$ of the symmetric matrix A_{s} with an orthogonal matrix U and the diagonal matrix D, whose diagonal elements are the eigenvalues of A_{s}.
12. Assume the notations in the two previous examples. Let A be a (not necessarily symmetric) real n-by- n matrix with $(A v, v)_{\ell_{2}} \geq 0$ for all $v \in \mathbb{R}^{n}$. Derive a linear system of equations which characterizes a solution $u \in \mathbb{R}^{n}$ of the minimization problem

$$
J(u)=\min _{v \in \mathbb{R}^{n}} J(v)
$$

with

$$
J(v)=\frac{1}{2}(A v, v)_{\ell_{2}}-(f, v)_{\ell_{2}}
$$

for a given $f \in \mathbb{R}^{n}$.

