ÜBUNGEN ZU

NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

für den 12. 10. 2005

1. Show that a general linear second-order differential operator

$$
L u(x) \equiv-\bar{a}(x) u^{\prime \prime}(x)+\bar{b}(x) u^{\prime}(x)+\bar{c}(x) u(x)
$$

can always be written in the form

$$
L u(x) \equiv-\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)
$$

and vice versa (under the assumption that the coefficients are sufficiently smooth).
2. Find variational formulations ($V=$?, $V_{0}=$?, $V_{g}=$?, $a=$?, $F=$?) for the following boundary value problems:
(a)

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \quad x \in(0,1), \\
u(0) & =g_{0} \\
u(1) & =g_{1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \quad x \in(0,1), \\
-u^{\prime}(0) & =g_{0} \\
u^{\prime}(1) & =g_{1}
\end{aligned}
$$

(c)

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \quad x \in(0,1), \\
u(0) & =g_{0}, \\
u^{\prime}(1) & =\alpha_{1}\left(g_{1}-u(1)\right)
\end{aligned}
$$

3. The scalar product in the Hilbert space $H=L^{2}(0,1)$ is given by

$$
(w, v)_{0}=\int_{0}^{1} w(x) v(x) d x
$$

The scalar product in the Hilbert space $V=H^{1}(0,1)$ is given by

$$
(w, v)_{1}=(w, v)_{0}+\left(w^{\prime}, v^{\prime}\right)_{0}=\int_{0}^{1} w(x) v(x) d x+\int_{0}^{1} w^{\prime}(x) v^{\prime}(x) d x
$$

Let $f \in L^{2}(0,1)$. Consider the variational problem:
Find $u \in V$ such that

$$
(u, v)_{1}=(f, v)_{0} \quad \text { for all } v \in V .
$$

What is the corresponding boundary value problem in classical formulation?
4. Show for the variational formulation of the boundary value problem 2 (b):
(a) If u is a solution, then, for any constant $c \in \mathbb{R}, u+c$ is also a solution.
(b) If the boundary value problem has a solution u, then

$$
\langle F, c\rangle=0
$$

for any constant function c. Hint: Choose the test function $v=c$.
5. Show the Poincaré inequality: There is a constant $C_{P}>0$ with

$$
\int_{0}^{1} v(x)^{2} d x \leq C_{P}^{2}\left[\left(\int_{0}^{1} v(x) d x\right)^{2}+\int_{0}^{1} v^{\prime}(x)^{2} d x\right] \quad \text { for all } v \in H^{1}(0,1)
$$

Hint: Prove the inequality for $v \in C^{1}[0,1]$ by integrating the identity:

$$
v(y)=v(x)+\int_{x}^{y} v^{\prime}(z) d z
$$

with respect to x over the interval $(0,1)$. Then use (without proof) that $C^{1}[0,1]$ is dense in $H^{1}(0,1)$.
6. Show only with the help of the Poincaré inequality:

$$
u^{\prime} \equiv 0 \Longleftrightarrow u \text { is constant } \quad \text { for all } u \in H^{1}(0,1) .
$$

Hint: Apply the Poincaré inequality for the function $v=u-\bar{u}$ with

$$
\bar{u}=\int_{0}^{1} u(x) d x .
$$

