## P XII / P XIII 22./29.01.2002 (Zeit : 10또-11으 Uhr; Raum : KG 519 )

### 4.1 Mehrfachpendel

P01 Die physikalische Modellierung für die Bewegung eines Doppelpendels ist im Anhang dargestellt.

1. Simulieren Sie die Bewegung des Doppelpendels numerisch!
2. Modellieren Sie die Bewegung eines Dreifachpendels, und führen Sie wieder numerische Simulationen durch!

## 4．1．1 Anhang

siehe auch http：／／scienceworld．wolfram．com／physics／DoublePendulum．html

| WOLFRAM | PRODUCTS | SERVICES | 耳hees |  |  | 1 scienceworld．wolfram．com |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | soturions | RESOURCE | RY P | news | onine store | OURCOMRM |
| 铬A WOLFRAM WEB RESOURCE |  |  | ASTRONOMY | BIOGRAPH | CHE | ISTRY | mathematics | PHYSICS |

Mechanics ${ }^{\text {－}}$ Pendula＊

## Double Pendulum



A double pendulum consists of one pendulum attached to another．Double pendula are an example of a simple physical system which can exhibit chaotic ${ }^{(8)}$ behavior．Consider a double bob pendulum with masses $m_{1}$ and $m_{2}$ attached by rigid massless wires of lengths $l_{1}$ and $l_{2}$ ．Further， let the angles the two wires make with the vertical be denoted $\theta_{1}$ and $\theta_{2}$ ，as illustrated above．

Finally，let gravity be given by $g$ ．Then the positions of the bobs are given by

$$
\begin{align*}
x_{1} & =l_{1} \sin \theta_{1}  \tag{1}\\
y_{1} & =-l_{1} \cos \theta_{1}  \tag{2}\\
x_{2} & =l_{1} \sin \theta_{1}+l_{2} \sin \theta_{2}  \tag{3}\\
y_{2} & =-l_{1} \cos \theta_{1}-l_{2} \cos \theta_{2} \tag{4}
\end{align*}
$$

The potential energy of the system is then given by

$$
\begin{align*}
V & =m_{1} g y_{1}+m_{2} g y_{2}  \tag{5}\\
& =-\left(m_{1}+m_{2}\right) g l_{1} \cos \theta_{1}-m_{2} g l_{2} \cos \theta_{2} \tag{6}
\end{align*}
$$

and the kinetic energy by

$$
\begin{align*}
T & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}  \tag{7}\\
& =\frac{1}{2} m_{1} l_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2}\left[l_{1}^{2} \dot{\theta}_{1}^{2}+l_{2}^{2} \dot{\theta}_{2}^{2}+2 l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right] \tag{8}
\end{align*}
$$

The Lagrangian is then

$$
\begin{align*}
& L \equiv T-V \\
& \begin{aligned}
&= \frac{1}{2}\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} l_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos ( \\
&\left(\theta_{1}-\theta_{2}\right) \\
&+\left(m_{1}+m_{2}\right) g l_{1} \cos \theta_{1}+m_{2} g l_{2} \cos \theta_{2}
\end{aligned}
\end{align*}
$$

Therefore, for $\theta_{1}$,

$$
\begin{align*}
\frac{\partial L}{\partial \dot{\theta}_{1}} & =m_{1} l_{1}^{2} \dot{\theta}_{1}+m_{2} l_{1}^{2} \dot{\theta}_{1}+m_{2} l_{1} l_{2} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)  \tag{10}\\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{1}}\right) & =\left(m_{1}+m_{2}\right) l_{1}^{2} \ddot{\theta}_{1}+m_{2} l_{1} l_{2} \ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)-m_{2} l_{1} l_{2} \dot{\theta}_{2} \sin \left(\theta_{1}-\theta_{2}\right)\left(\dot{\theta}_{1}-\dot{\theta}_{2}\right)  \tag{11}\\
\frac{\partial L}{\partial \theta_{1}} & =-l_{1} g\left(m_{1}+m_{2}\right) \sin \theta_{1}-m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \sin \left(\theta_{1}-\theta_{2}\right) \tag{12}
\end{align*}
$$

so the Euler-Lagrange differential equation ${ }^{8}$ for $\theta_{1}$ becomes

$$
\begin{align*}
\left(m_{1}+m_{2}\right) l_{1}^{2} \ddot{\theta}_{1}+m_{2} l_{1} l_{2} \ddot{\theta}_{2} \cos \left(\theta_{1}-\right. & \left.\theta_{2}\right) \\
& +m_{2} l_{1} l_{2} \dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right)+l_{1} g\left(m_{1}+m_{2}\right) \sin \theta_{1}=0 \tag{13}
\end{align*}
$$

Dividing through by $l_{1}$, this simplifies to

$$
\begin{align*}
\left(m_{1}+m_{2}\right) l_{1} \ddot{\theta}_{1}+m_{2} l_{2} \ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) & \\
& +m_{2} l_{2} \dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right)+g\left(m_{1}+m_{2}\right) \sin \theta_{1}=0 . \tag{14}
\end{align*}
$$

Similarly, for $\theta_{2}$,

$$
\begin{align*}
\frac{\partial L}{\partial \dot{\theta}_{2}} & =m_{2} l_{2}^{2} \dot{\theta}_{2}+m_{2} l_{1} l_{2} \dot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)  \tag{15}\\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{2}}\right) & =m_{2} l_{2} \ddot{\theta}_{2}+m_{2} l_{1} l_{2} \ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)-m_{2} l_{1} l_{2} \dot{\theta}_{1} \sin \left(\theta_{1}-\theta_{2}\right)\left(\dot{\theta}_{1}-\dot{\theta}_{2}\right)  \tag{16}\\
\frac{\partial L}{\partial \theta_{2}} & =m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \sin \left(\theta_{1}-\theta_{2}\right)-l_{2} m_{2} g \sin \theta_{2}, \tag{17}
\end{align*}
$$

so the Euler-Lagrange differential equation ${ }^{(3)}$ for $\theta_{2}$ becomes

$$
\begin{equation*}
m_{2} l_{2}^{2} \ddot{\theta}_{2}+m_{2} l_{1} l_{2} \ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)-m_{2} l_{1} l_{2} \dot{\theta}_{1}^{2} \sin \left(\theta_{1}-\theta_{2}\right)+l_{2} m_{2} g \sin \theta_{2}=0 \tag{18}
\end{equation*}
$$

Dividing through by $l_{2}$, this simplifies to


The coupled second-order ordinary differential equations (14) and (19) can be solved numerically for $\theta_{1}(t)$ and $\theta_{2}(t)$, as illustrated above for one particular choice of parameters and initial conditions. Plotting the resulting solutions quickly reveals the complicated motion.

The equations of motion can also be written in the Hamiltonian formalism. Computing the generalized momenta gives

$$
\begin{align*}
p_{\theta_{1}} & =\frac{\partial L}{\partial \dot{\theta}_{1}}=\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\theta}_{1}+m_{2} l_{1} l_{2} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)  \tag{20}\\
p_{\theta_{2}} & =\frac{\partial L}{\partial \dot{\theta}_{2}}=m_{2} l_{2}^{2} \dot{\theta}_{2}+m_{2} l_{1} l_{2} \dot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right) \tag{21}
\end{align*}
$$

The Hamiltonian is then given by

$$
\begin{align*}
H=\theta_{i} p_{i}-L=\frac{1}{2}\left(m_{1}+m_{2}\right) l_{1}^{2} \theta_{1}^{2}+\frac{1}{2} m_{2} l_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos ( & \left.\theta_{1}-\theta_{2}\right) \\
& -\left(m_{1}+m_{2}\right) g l_{1} \cos \theta_{1}-m_{2} g l_{2} \cos \theta_{2} . \tag{22}
\end{align*}
$$

Solving (20) and (21) for $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$ and plugging back in to (22) and simplifying gives

$$
\begin{align*}
H=\frac{l_{2}^{2} m_{2} p_{\theta_{1}}^{2}+l_{1}^{2}\left(m_{1}+m_{2}\right) p_{\theta_{2}}^{2}-2 m_{2} l_{1} l_{2} p_{\theta_{1}} p_{\theta_{2}} \cos \left(\theta_{1}-\theta_{2}\right)}{2 l_{1}^{2} 2_{2}^{2} m_{2}\left[m_{1}+\sin ^{2}\left(\theta_{1}-\theta_{2}\right) m_{2}\right]} & \\
& -m_{2} g l_{2} \cos \theta_{2}-\left(m_{1}+m_{2}\right) g l_{1} \cos \theta_{1} \tag{23}
\end{align*}
$$

This leads to the Hamilton's equations

$$
\begin{align*}
\dot{\theta}_{1} & =\frac{\partial H}{\partial p_{\theta_{1}}}=\frac{l_{2} p_{\theta_{1}}-l_{1} p_{\theta_{2}} \cos \left(\theta_{1}-\theta_{2}\right)}{l_{1}^{2} l_{2}\left[m_{1}+m_{2} \sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right]}  \tag{24}\\
\dot{\theta}_{2} & =\frac{\partial H}{\partial p_{\theta_{2}}}=\frac{l_{1}\left(m_{1}+m_{2}\right) p_{\theta_{2}}-l_{2} m_{2} p_{\theta_{1}} \cos \left(\theta_{1}-\theta_{2}\right)}{l_{1} l_{2}^{2} m_{2}\left[m_{1}+m_{2} \sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right]}  \tag{25}\\
\dot{p}_{\theta_{1}} & =-\frac{\partial H}{\partial \theta_{1}}=-\left(m_{1}+m_{2}\right) g l_{1} \sin \theta_{1}-C_{1}+C_{2}  \tag{26}\\
\dot{p}_{\theta_{2}} & =-\frac{\partial H}{\partial \theta_{2}}=-m_{2} g l_{2} \sin \theta_{2}+C_{1}-C_{2} \tag{27}
\end{align*}
$$

where

$$
\begin{equation*}
C_{1} \equiv \frac{p_{\theta_{1}} p_{\theta_{2}} \sin \left(\theta_{1}-\theta_{2}\right)}{l_{1} l_{2}\left[m_{1}+m_{2} \sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right]} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2} \equiv \frac{l_{2}^{2} m_{2} p_{1}^{2}+l_{1}^{2}\left(m_{1}+m_{2}\right) p_{2}^{2}-l_{1} l_{2} m_{2} p_{1} p_{2} \cos \left(\theta_{1}-\theta_{2}\right)}{2 l_{1}^{2} l_{2}^{2}\left[m_{1}+m_{2} \sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right]^{2}} \sin \left[2\left(\theta_{1}-\theta_{2}\right)\right] . \tag{29}
\end{equation*}
$$

SE\& AISo: Coupled Pendula, Hamiltonian, Lagrangian, Pendulum

## References

Arnold, V. I. Problem in Mathematical Methods of Classical Mechanics, 2nd ed. New York: Springer-Verlag, p. 109, 1989.

Wells, D. A. Theory and Problems of Lagrangian Dynamics. New York: McGraw-Hill, pp. 13-14, 24, and 320-321, 1967.

Double Prism

