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L2 Error Estimates for a Nonstandard Finite
Element Method on Polyhedral Meshes

Clemens Hofreither

December 3, 2010

Abstract

Recently, C. Hofreither, U. Langer and C. Pechstein have analyzed
a nonstandard finite element method based on element-local boundary
integral operators. The method is able to treat general polyhedral meshes
and employs locally PDE-harmonic trial functions. In the previous work,
the primal formulation of the method has been analyzed as a perturbed
Galerkin scheme, obtaining H1 error estimates. In this work, we pass
to an equivalent mixed formulation and derive error estimates in the L2-
norm, which were so far not available. Many technical tools from our
previous analysis remain applicable in this setting.

1 Introduction
In certain applications, it is advantageous to discretize partial differential equa-
tions (PDEs) on non-standard grids consisting of heterogeneous, non-simplicial
elements and incorporating hanging nodes. For instance, in reservoir simulation,
polygonal or polyhedral meshes are in common use (cf., e.g., [12]). In simulating
drug diffusion through the human skin, tetrakaidecahedra (14-faced polyhedra)
have been employed to model cells in the outermost skin layer, so-called corneo-
cytes [7].

Previously established methods which are able to treat such generalized
meshes are, among others, the Mimetic Finite Difference Method (see, e.g., [12]
or [2]), special Mixed Finite Element Methods (see [10] and [11]), or the Discon-
tinuous Galerkin Method (see, e.g., [6]). D. Copeland, U. Langer and D. Pusch
have recently introduced a novel technique for treating boundary value prob-
lems on polyhedral meshes [5]. They have demonstrated that this new method
works well for different classes of problems including diffusion problems, the
Helmholtz equation and the Maxwell equations in the frequency domain (see
also [4]). This approach employs locally PDE-harmonic trial functions, i.e. trial
functions which are elementwise PDE-harmonic, and uses boundary element
techniques to assemble the element stiffness matrices. For this reason, the new
non-standard finite element method was also called BEM-based FEM.
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First steps towards a rigorous analysis of this approach were done in [8],
where the method was studied in the framework of a primal variational formu-
lation with elementwise Dirichlet traces of the solution as its unknowns. The
realization of this Galerkin method requires the inversion of the single layer
potential operator in every element, which can typically only be done approxi-
mately. This implicates a “variational crime” in the form of an inexact bilinear
form, and introduces a consistency error to the numerical scheme, making L2

error estimates hard to obtain via standard techniques. In the present work,
we show an alternate approach to the analysis via a mixed formulation having
both Dirichlet and Neumann traces as its unknowns. Building upon the tech-
nical tools developed in our previous work [8], we will be able to recover the
error estimates in the H1-norm obtained therein as well as derive previously
unavailable L2 error estimates.

The remainder of this paper is organized as follows. In Section 2, we derive
both the primal variational formulation and the equivalent mixed variational
formulation, and discretize the latter. In Section 3, we formulate regularity
assumptions for general polyhedral meshes, and state an approximation result
on the skeletons of such meshes. Section 4 is devoted to the derivation of mesh-
independent error estimates for the BEM-based FEM in both the H1- and the
L2-norms. In the final Section 5, we draw some conclusion.

2 Formulations of a BEM-based FEM

2.1 The primal skeletal variational formulation
Let Ω ⊂ R3 be a bounded Lipschitz domain and Γ = ∂Ω its boundary, and let
us consider the pure Dirichlet boundary value problem for the Poisson equation

−∆u = f in Ω and u = g on Γ,

with g ∈ H1/2(Γ) and f ∈ L2(Ω), as our model problem. The standard varia-
tional formulation is the following: find u ∈ H1(Ω) such that the trace γ0

Γu of
u on Γ equals g and the standard variational equation∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx ∀v ∈ H1
0 (Ω). (1)

holds.
We now consider a family of non-overlapping decompositions (Ti)Ni=1 of Ω,

Ω =
N⋃
i=1

T i, Ti ∩ Tj = ∅ ∀i 6= j.

We assume that each element Ti is an open Lipschitz polyhedron whose bound-
ary Γi = ∂Ti has a conforming triangulation Fi = {τij ⊂ Γi}j composed of
open triangles. We call such a decomposition (Ti)Ni=1 a polyhedral mesh of Ω.
We further assume that the elements are matching in the sense that, for all
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τi ∈ Fi and τj ∈ Fj , we have τi ∩ τj 6= ∅ ⇔ τi = τj ∈ Fi ∩ Fj . In other words,
boundary triangles from two neighboring elements should either be identical or
not intersect at all.

For any suitable domain T , let

H1
∆,f (T ) :=

{
u ∈ H1(T ) :

∫
T

∇u · ∇v dx =
∫
T

fv dx ∀v ∈ H1
0 (T )

}
denote the manifold of weak local solutions of the Poisson equation.

Following McLean [13], we introduce the Dirichlet and Neumann trace op-
erators

γ0
i = γ0

Γi
: H1(Ti)→ H1/2(Γi) and γ1

i : H1
∆,f (Ti)→ H−1/2(Γi)

which satisfy, for all u ∈ H1
∆,f (Ti) and v ∈ H1(Ti), the Green’s identity

〈γ1
i u, γ

0
i v〉 = −

∫
Ti

fv dx+
∫
Ti

∇u · ∇v dx, (2)

where 〈· , ·〉 denotes the duality pairing between H−1/2(Γi) and H1/2(Γi). Fur-
thermore, we define the extension operators

Hfi : H1/2(Γi)→ H1
∆,f (Ti)

such that, for any φ ∈ H1/2(Γi), its image Hfi (φ) is the uniquely defined element
of Hf (Ti) having φ as its Dirichlet data. By a superposition argument, it is easy
to see that Hfi (φ) = Hfi (0) +H0

i (φ).
Finally, we introduce the Dirichlet-to-Neumann maps

Sfi := γ1
i ◦ H

f
i : H1/2(Γi)→ H−1/2(Γi),

and from the above we infer that

Sfi (φ) = γ1
i (Hfi (0) +H0

i (φ)) = Sfi (0) + S0
i (φ). (3)

Note that Hi := H0
i and Si := S0

i are linear operators.
Let us ΓS :=

⋃N
i=1 Γi denote the skeleton of the mesh, and let us intro-

duce the space H1/2(ΓS) as the trace space of H1-functions onto the skeleton.
Furthermore, let W = {v ∈ H1/2(ΓS) : v|Γ = 0} be the space of all skeletal
functions with vanishing boundary values. A discussion analogous to the one
used to prove [8, Proposition 2.1] convinces us that the following two variational
problems are equivalent:

• find uΩ ∈ H1(Ω) such that γ0
Γu = g and∫

Ω

∇uΩ · ∇vΩ =
∫

Ω

fv dx ∀v ∈ H1
0 (Ω);
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• find u ∈ H1/2(ΓS) such that u|Γ = g and

N∑
i=1

〈Sfi (ui), vi〉 = 0 ∀v ∈W. (4)

(Here and henceforth we adopt the notational convention vi = v|Γi
for skeletal

functions.) The equivalence is to be understood in the sense that ui = γ0
i uΩ,

and uΩ = Hfi (ui) on every element Ti. In other words, u is the skeletal trace of
the solution uΩ, and uΩ can be locally reconstructed as the extension of u.

The Green’s identity (2) with the choice u = Hfi (0) and v = Hiφ for arbitrary
φ ∈ H1/2(Γi) yields

〈Sfi (0), φ〉 = −
∫
Ti

fHiφdx+
∫
Ti

∇Hfi (0) · ∇Hiφdx = −
∫
Ti

fHiφdx. (5)

Using relations (3) and (5), we may rewrite the variational problem (4) as

N∑
i=1

〈Siui, vi〉 =
N∑
i=1

∫
Ti

f Hivi dx ∀v ∈W,

We introduce the shorthand notation HS : H1/2(ΓS)→ H1(Ω) for the piecewise
harmonic extension from the skeleton to each element Ti. Also, for convenience,
we identify the given Dirichlet data g with a suitable skeletal extension g ∈
H1/2(ΓS), which always exists. We thus have the variational problem: find
u ∈ g +W with

N∑
i=1

〈Siui, vi〉 =
∫

Ω

f HSv dx ∀v ∈W. (6)

2.2 The mixed skeletal variational formulation
The Dirichlet-to-Neumann map Si has the representation

Siui = Diui + ( 1
2I +K ′i)V

−1
i ( 1

2I +Ki)ui

in terms of the boundary integral operators

Vi : H−1/2(Γi)→ H1/2(Γi), Ki : H1/2(Γi)→ H1/2(Γi),

K ′i : H−1/2(Γi)→ H−1/2(Γi), Di : H1/2(Γi)→ H−1/2(Γi).

They are called, in turn, the single layer potential, double layer potential, adjoint
double layer potential, and hypersingular operators. Note that their definition
requires the explicit knowledge of a fundamental solution of the differential
operator in question. For details, we refer the reader to, e.g., McLean [13] or
Steinbach [15].
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We introduce the space of elementwise Neumann traces,

Z :=
N⊗
i=1

H−1/2(Γi).

In contrast to the space W, whose members are globally continuous on the
skeleton, Z contains functions which are discontinuous and double-valued on
inner triangles.

We now introduce the auxiliary variable t := (ti)Ni=1 ∈ Z, with components
ti = V −1

i ( 1
2I + Ki)ui for i = 1, 2, . . . , n. Equivalently, ti ∈ H−1/2(Γi) is deter-

mined by the local variational equation

〈zi, Viti〉 = 〈zi, ( 1
2I +Ki)ui〉 ∀zi ∈ H−1/2(Γi).

With this, Siui = Diui + ( 1
2I + K ′i)ti, and hence we can write the following

equivalent mixed formulation for (6): find (u, t) ∈ X := W × Z such that

a(u, v) + b(v, t) = 〈F, v〉 ∀v ∈W,
−b(u, z) + c(z, t) = 〈G, z〉 ∀z ∈ Z,

where

a(u, v) =
N∑
i=1

〈Diui, vi〉, b(v, t) =
N∑
i=1

〈ti, ( 1
2I +Ki)vi〉, c(z, t) =

N∑
i=1

〈zi, Viti〉,

〈F, v〉 =
∫

Ω

f HSv dx− a(g, v), 〈G, z〉 = b(g, z).

With the combined bilinear form

A((u, t), (v, z)) := a(u, v) + b(v, t)− b(u, z) + c(z, t),

we may write more compactly: find (u, t) ∈ X such that

A((u, t), (v, z)) = 〈F, v〉+ 〈G, z〉 ∀(v, z) ∈ X. (7)

2.3 Discretization
Let us recall that the elements {Ti} are provided with the boundary triangula-
tions {Fi}, all of which match across elements. Therefore, F :=

⋃
i Fi describes

a triangulation of the skeleton ΓS . With this, we introduce the trial spaces

Wh := {v ∈W : v|τ ∈ P 1(τ) ∀τ ∈ F}, and

Zh :=
N⊗
i=1

Zh,i, where Zh,i := {z ∈ L2(Γi) : z|τ ∈ P 0(τ) ∀τ ∈ Fi}.

Here, P k(τ) denotes the polynomial space of degree k on the triangle τ .
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We discretize the variational formulation (7) by looking for some (uh, th) ∈
Xh := Wh × Zh ⊂ X such that

A((uh, th), (vh, zh)) = 〈F, vh〉+ 〈G, zh〉 ∀(vh, zh) ∈ Xh. (8)

In practice, the auxiliary variable th can be eliminated locally on each element,
and only the primal unknowns uh enter the linear system to be solved.

This discrete variational formulation is equivalent to a primal formulation
where the Dirichlet-to-Neumann map Si has been replaced with a symmet-
ric approximation leading to a so-called variational crime. Based on Strang’s
Lemma, C. Hofreither, U. Langer and C. Pechstein provide a discretization er-
ror analysis with respect to the H1-norm in [8]. Now, the detour via the mixed
variational reformulation leads to the conforming Galerkin discretization (8) of
(7). Therefore, we have the Galerkin orthogonality

A((u− uh, t− th), (vh, zh)) = 0 ∀(vh, zh) ∈ Xh. (9)

3 Mesh regularity
For general polyhedral meshes with arbitrary element shapes, we cannot use the
standard technique of transforming to a reference element to obtain uniform ap-
proximation properties. In [8, Sect. 4.3], two generalized regularity assumptions
on such meshes are given which substitute for more standard transformation-
based regularity assumptions. For the sake of completeness we repeat these
assumptions here.

Assumption 1. We assume that the polyhedral mesh (Ti)Ni=1 satisfies the fol-
lowing conditions.

• There is a small, fixed integer uniformly bounding the number of boundary
triangles of every element.

• Every element Ti has an auxiliary conforming, quasi-regular, tetrahedral
triangulation with regularity parameters which are uniform across all ele-
ments, cf. [3].

Definition 1 (Uniform domain [9]). A bounded and connected set D ⊂ Rd is
called a uniform domain if there exists a constant CU (D) such that any pair of
points x1 ∈ D and x2 ∈ D can be joined by a rectifiable curve γ(t) : [0, 1]→ D
with γ(0) = x1 and γ(1) = x2, such that the Euclidean arc length of γ is
bounded by CU (D) |x1 − x2| and

min
i=1,2

|xi − γ(t)| ≤ CU (D) dist(γ(t), ∂D) ∀t ∈ [0, 1].

Any Lipschitz domain is also a uniform domain. In the following, for any
Lipschitz domain D, we call the smallest constant CU (D) that complies with
Definition 1 the Jones parameter of D.
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The second parameter that we use is the constant in Poincaré’s inequality.
For a uniform domain D, let CP (D) be the smallest constant such that

inf
c∈R
‖u− c‖L2(D) ≤ CP (D) diam(D) |u|H1(D) ∀u ∈ H1(D). (10)

For convex domains D, one can show that CP (D) ≤ 1/π, cf. [1]. Estimates for
star-shaped domains can be found in [16, 17].

Since each individual element Ti is Lipschitz, the Jones parameter CU (Ti)
and the constant CP (Ti) in Poincaré’s inequality are both bounded.

Assumption 2. We assume that there are constants C∗U > 0 and C∗P > 0 such
that, for all i ∈ {1, . . . , N},

CU (Ti) ≤ C∗U , CU (Bi \ T i) ≤ C∗U ,
CP (Ti) ≤ C∗P , CP (Bi \ T i) ≤ C∗P ,

where Bi is a ball (or a suitable Lipschitz domain) enclosing Ti which satisfies
dist(∂Bi, ∂Ti) ≥ 1

2 diam(Ti).

In the following, we will assume that all polyhedral meshes we work with
satisfy Assumption 1 and Assumption 2. We will call such meshes regular.
Furthermore, we will generically use C to refer to constants which depend only
on the regularity parameters from the two assumptions, and call such constants
uniform.

For the convergence and approximation results that follow, we equip the
space X = W × Z with the norm

‖(v, z)‖2X := |||v|||2S + ‖z‖2V :=
N∑
i=1

〈Sivi, vi〉+
N∑
i=1

〈Vizi, zi〉.

Let h := maxi{diamTi} denote the mesh size. On regular meshes, we have
the following approximation theorem.

Theorem 1. Assume that the mesh (Ti)Ni=1 is regular, i.e. Assumption 1 and
Assumption 2 hold. If wΩ ∈ H2(Ω) with piecewise linear boundary conditions
g, and if (φ, η) ∈ (g, 0) + X denotes its skeletal Dirichlet and Neumann data,
respectively, then

inf
(φh,ηh)∈(g,0)+Xh

‖(φ− φh, η − ηh)‖X ≤ C h |wΩ|H2(Ω) (11)

with a uniform constant C.

Proof. This theorem subsumes results on approximation of both Dirichlet and
Neumann traces which were originally derived in [8]. These results were therein
stated for the case where the function wΩ to be approximated is the exact
solution of (1), but inspecting the proofs makes it clear that only the property
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wΩ ∈ H2(Ω) is actually used. In particular, [8, Theorem 4.8] asserts that, under
the above assumptions,

inf
φh∈g+Wh

|||φ− φh|||S ≤ C h |wΩ|H2(Ω).

Analogously, for the Neumann traces, [8, Theorem 4.11] states that on every
element Ti,

inf
ηh,i∈Zh,i

‖ηi − ηh,i‖Vi
≤ C (diamTi) |wΩ|H2(Ti).

Obtaining the statement is then a simple matter of combining these results.

4 Error estimates
In this section, we provide error estimates for the discretized problem (8). Error
estimates in skeletal function spaces, while inherently mesh-dependent, are an
important intermediate result in the derivation of mesh-independent estimates,
and are given first. Next we provide an error estimate in the H1-norm which
was already given in [8], but is here rederived using our new mixed variational
framework. Finally, we present an estimate in the L2-norm which constitutes
the main new result of this paper.

4.1 Convergence on the skeleton
Theorem 2. Let Assumption 1 and Assumption 2 be fulfilled. Then the discrete
solution (uh, th) ∈ Xh of (8) is a quasi-optimal approximation to the solution
(u, t) ∈ X of (7). That is,

‖(u− uh, t− th)‖X ≤ C inf
(vh,zh)∈Xh

‖(u− vh, t− zh)‖X (12)

with a uniform constant C.

Proof. The result is proved using Céa’s Lemma. Hence, only uniform coercivity
and boundedness of the bilinear form A need to be shown.

We take note of the spectral equivalence
1
C
〈Sivi, vi〉 ≤ 〈Divi, vi〉 ≤ 〈Sivi, vi〉 ∀v ∈ H1/2(Γi), (13)

which is well-known in boundary integral operator theory [15]. Pechstein has
shown in [14, Lemma 6.6] that Di ≥ c?D,i Si, where c?D,i = 1

2 CE(Bi \ Ti)−2 (1 +
CP (Bi\Ti)2)−1, and the extension constant CE(Bi\Ti) depends only on CU (Bi\
Ti) ≤ C∗U . Therefore, the constant C ≥ 1 in (13) can be bounded explicitly in
terms of C∗P and C∗U and is thus uniform.

Hence we obtain coercivity of the bilinear form A via

A((v, z), (v, z)) =
∑
i

〈Divi, vi〉+
∑
i

〈zi, Vizi〉

≥ 1
C

∑
i

〈Sivi, vi〉+
∑
i

〈zi, Vizi〉 ≥
1
C
‖(v, z)‖2X .
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In order to get upper bounds, we again use (13) as well as the Cauchy-
Schwarz inequality for the symmetric and positive (semi-)definite forms 〈·, Vi ·〉
and 〈Di ·, ·〉 to see that

|a(u, v)| ≤ |||u|||S |||v|||S , |c(t, z)| ≤ ‖t‖V ‖z‖V .

By duality of the norms ‖ · ‖Vi
and ‖ · ‖V −1

i
, we get

b(v, t) =
∑
i

〈ti, ( 1
2I +Ki)vi〉 ≤

∑
i

‖ti‖Vi
‖( 1

2I +Ki)vi‖V −1
i

(∗)
≤ C

∑
i

‖ti‖Vi
|vi|Si

≤ C‖t‖V |||v|||S .

The inequality marked with (∗) stems from the relation ‖( 1
2I + Ki)vi‖V −1

i
≤

cK,i(1− cK,i)−1/2|vi|Si
proved in [8, Equation (3.1)]. Pechstein [14] has shown

that the contraction constants cK,i can be bounded explicitly in terms of C∗P
and C∗U , and thus C ≥ 1 is a uniform constant.

Combined, the above bounds yield

|A((u, t), (v, z))| ≤ C
(
|||u|||S |||v|||S + ‖t‖V |||v|||S + |||u|||S‖z‖V + ‖t‖V ‖z‖V

)
= C(|||u|||S + ‖t‖V )(|||v|||S + ‖z‖V )
≤ 2C ‖(u, t)‖X ‖(v, z)‖X .

While error estimates on the skeleton follow directly from this result and
Theorem 1, they are inherently mesh-dependent and therefore of limited use.
More interesting is the error within the domain with respect to the exact solution
of (1), which will typically have additional regularity, say, uΩ ∈ H2(Ω). Within
a given element Ti, this error is given by

uΩ −Hfi (uh + g) = Hfi (u+ g)−Hfi (uh + g) = Hi(u− uh),

and hence it is sufficient to bound the error HS(u− uh).

4.2 Convergence in the H1-norm
From Green’s identity, it is easy to see that

|Hiφ|2H1(Ti)
= 〈Siφ, φ〉 ∀φ ∈ H1/2(Γi).

Hence, with Theorem 2 and Theorem 1, it follows

|HS(u− uh)|H1(Ω) = |||u− uh|||S ≤ ‖(u− uh, t− th)‖X ≤ C h |uΩ|H2(Ω).

4.3 Convergence in the L2-norm
The proof of the error estimate in the L2-norm proceeds by a standard Aubin-
Nitsche duality argument. We assume that the adjoint to variational problem (1)
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is H2-coercive and take the harmonic extension HS(u−uh) of the discretization
error as the right-hand side in the adjoint variational problem. Then the solution
w ∈ H1

0 of the adjoint problem∫
Ω

∇v · ∇w dx =
∫

Ω

HS(u− uh) v dx ∀v ∈ H1
0 (Ω) (14)

even belongs to H2(Ω) and satisfies the estimate

|w|H2(Ω) ≤ C ‖HS(u− uh)‖L2(Ω). (15)

Then the skeletal traces (φ, η), where φi := γ0
i w, ηi := γ1

i w for i = 1, . . . , N ,
satisfy the (adjoint) mixed skeletal variational formulation (7), i.e.,

A((v, z), (φ, η)) =
∫

Ω

HS(u− uh)HSv dx ∀(v, z) ∈ X.

In particular, with the choice (v, z) = (u−uh, t−th) and exploiting the Galerkin
orthogonality (9) as well as uniform boundedness of A, we get

‖HS(u− uh)‖2L2(Ω) = A((u− uh, t− th), (φ, η))

= A((u− uh, t− th), (φ− φh, η − ηh))
≤ C ‖(u− uh, t− th)‖X ‖(φ− φh, η − ηh)‖X

for arbitrary (φh, ηh) ∈ Xh. Taking the infimum over (φh, ηh) and using Theo-
rem 2 and Theorem 1, we obtain

‖HS(u− uh)‖2L2(Ω) ≤ C h
2 |uΩ|H2(Ω) |w|H2(Ω).

Using now estimate (15), we arrive at the L2 error estimate

‖HS(u− uh)‖L2(Ω) ≤ C h2 |uΩ|H2(Ω). (16)

This proves our main theorem.

Theorem 3. Let us assume that the assumptions of Theorem 1 are satisfied and
that the adjoint problem (14) is H2-coercive. If the solution u of the variational
problem (1) belongs to H2(Ω), then the quasi-optimal L2 discretization error
estimate (16) holds.

5 Conclusions
The detour via a mixed variational formulation allows us to establish a quasi-
optimal L2 discretization error estimate for the BEM-based FE discretization of
the diffusion equation on polyhedral meshes that was introduced by D. Copeland,
U. Langer and D. Pusch in [5] and whose H1-convergence has been analyzed
in [8]. Numerical results confirming the O(h2) behaviour of the L2 discretiza-
tion error were already presented in [5] and [8] for two- and three-dimensional
diffusion problems, respectively.
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